
Communications for Statistical Applications and Methods
2015, Vol. 22, No. 5, 475–485

DOI: http://dx.doi.org/10.5351/CSAM.2015.22.5.475
Print ISSN 2287-7843 / Online ISSN 2383-4757

Graphical Methods for the Sensitivity Analysis in
Discriminant Analysis

Dae-Heung Janga, Christine M. Anderson-Cookb, Youngil Kim1,c

aDepartment of Statistics, Pukyong National University, Korea;
bStatistical Sciences Group, Los Alamos National Laboratory, USA;
cSchool of Business and Economics, Chung-Ang University, Korea

Abstract
Similar to regression, many measures to detect influential data points in discriminant analysis have been

developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of
discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a
data point is omitted. The new method is intuitive and easily interpretable compared to existing methods. We
also propose a graphical display to show the individual movement of the posterior probability of other data points
when a specific data point is omitted. This enables the summaries to capture the overall pattern of the change.

Keywords: discriminant analysis, influence detection measure, individual movement plot, influen-
tial observations

1. Introduction

Discriminant analysis is a collection of multivariate techniques that use statistical methods to charac-
terize or separate two or more classes of objects or events. We often use this technique to allocate new
observations to previously defined groups.

Using ideas from Cook (1977), the study of influential data points in discriminant analysis are used
to investigate the effect on the estimated overall probability of misclassification if certain observations
were deleted. Campbell (1978) considered the empirical influence curve, while Critchley and Vitiello
(1991), Fung (1992, 1995), Lahiff and Whitcomb (1990), Moreno-Roldán et al. (2007) and Lee and
Kim (2011) introduced relevant statistical measures based on Campbell (1978). Their papers are all
based on the deletion principle.

An new modification of local influence approach suggested by Cook (1986) was recently intro-
duced in discriminant analysis by Jung (1998) and Poon (2004). This approach utilizes local infinites-
imal perturbation for a differential comparison of parameter estimates. In this case there is no need to
delete an observation completely, which leads to an approach that has improved interpretability over
deletion methods.

Section 2 contains a review of linear discriminant analysis and defines the statistical method pro-
posed related to traditional approaches based on misclassification probabilities. Section 3 demon-
strates the method with two examples. The approach is compared to the local influence method.
Section 4 contains conclusions with some discussion.
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2. Review of Discriminant Analysis

We begin our discussion with some basic notation for the purpose of clarity. Given k populations
Π1,Π2, . . . ,Πk suppose that each Πi has a p.d.f. fi(x) for a set of p measurements, x. In discriminant
analysis it is important to find a partition of Rp into R1,R2, . . . ,Rk disjoint regions with the following
decision rule (2.1). When

x ∈ R j, allocate x to Π j. (2.1)

We assume that {Πi} follows a multivariate normal distribution (MVN), Np(µµµp,Σi) for i = 1, 2. In
case of equal Σ1 = Σ2 = Σ, the Fisher’s linear discriminant rule results: allocate x to Π1 if

h(x) = (µµµ1 − µµµ2)TΣ−1
(
x − µµµ1 + µµµ2

2

)
> 0 (2.2)

and to Π2 otherwise. Sometimes h(x) is called the discriminant function, which is linear in x. Further-
more, αT = Σ−1(µµµ1 − µµµ2) is the discriminant coefficient.

If we set up πi, i = 1, 2 as the prior probability for each group and assume the simple case: π1 = π2,
the misclassification probabilities, pi j = Pr(allocate to Π j when in fact from Πi) has the form (2.3)
below

pi j = Pr(h(x) > 0|Π2) = Φ
(
−1

2
∆

)
, for 2 group case, (2.3)

where ∆2 = (µµµ2 − µµµ1)TΣ−1(µµµ2 − µµµ1) is the Mahalanobis distance between µµµ2 and µµµ1.
In practice, µµµ1, µµµ2,Σ are often estimated by x̄1, x̄2, S p where S p is the pooled estimator of Σi, i =

1, 2 respectively.
This misclassification probability depends on the difference mean vector adjusted for Σ. By sym-

metry it is easy to see p12 = p21. For the multiple group case with different Σi, this misclassification
probability is difficult to calculate in closed form.

The actual error rate of misclassification, which is often reported in discriminant analysis output,
is different from this probability.

In this paper, we focus on the two group case with equal prior probability and equal cost of
misclassification for two reasons: (1) it is simple to explain the proposed new measure to detect
influential observations. (2) The existing measures that rely on the probability of misclassification
in more than 2 groups are usually hard to handle. However, the proposed graphical methods are not
constrained to the k = 2 case.

As noted above in Section 1, most statistical measures to detect influential observations are based
on the influence measure. Campbell (1978) applied the influence measure to discriminant scores and
discriminant coefficients. Later Critichely and Vitiello (1991) used exact calculations to show that the
influence of an observation on the misclassification probability is due to two sources: (a) the difference
between the data points linear discriminant score and that of its sample mean and (b) the estimated
Mahalanobis distance between the data point and its population mean.

Fung (1992, 1995) later developed diagnostic measures such as the expected change in discrimi-
nant scores due to the omission of specific observations for the two basic sources of misclassification.
Lachenbruch (1997) showed that the leverage of a data point is an increasing function of (b) and
decreasing function of (a).

Cook (1986) proposed a new approach without the need to delete one observation to detect influ-
ential observations in linear regression.
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It is well known that the discriminant coefficient α̂ can be obtained equivalently using regression
coefficients with a binary dummy dependent variable when k = 2. Let

Y = Xβ + ϵ

be the usual linear regression where Y is n × 1 vector of observation, X is n × q data matrix and ϵ
follows the n-dimensional multi-variate N(0, σ2I). Then the usual least squares coefficient estimate β̂
is obtained by maximizing the log-likelihood function below.

L(β) = − 1
2σ2

n∑
i=1

(
yi − xT

i β
)2
.

First define the following

L(β|ω) = − 1
2σ2

n∑
i=1

ωi

(
yi − xT

i β
)2

as the log-likelihood of the regression model with case-weight perturbation. The corresponding β̂ is
denoted as β̂ω. Then the method focuses on the largest eigenvector of the normal curvature matrix of
the following log-likelihood displacement (LD) (2.4) to determine the influential observations.

LD(ω) = 2
[
L
(
β̂|ω0

)
− L

(
β̂ω|ω

)]
, (2.4)

where ω0 is simply null perturbation, ωi = 1 for i = 1, 2, . . . , n.
From Cook (1986), the normal curvature matrix C of for the case perturbation is of the following

form (2.5)

C =
2
σ2 D(r)HD(r), (2.5)

where D(r) is the diagonal matrix with the ith diagonal element equal to ith residual and H = X(XT X)−1

XT . The method identifies influential observations based on the magnitude of the elements of largest
eigenvector lmax corresponding the normal curvature matrix. Furthermore, if Ci is the ith diagonal
element of C, the method considers Bi = Ci/

√
tr(C2). The group of cases with large Bi values believed

to be influential. For more details, readers are referred to the original paper. These two criteria, lmax
and Bi, are displayed with the new graphical approach for comparison. This idea was exploited in the
discriminant analysis by Poon (2004).

Cook’s approach is free of the dominating and masking effects often encountered in the analysis
using the leave-one-out diagnostics. Therefore this has been a welcomed addition to the existing liter-
ature despite the conceptual difficulty for practitioners. Our new statistical measure will be compared
with this approach for this complimentary purpose.

Each statistical measure is developed by focusing on different aspects of the misclassification
probability, and this means that each has its own subset of influential data points. A subset of influen-
tial observations can be different based on which measure is considered with a specific measure.

In Section 3 we propose another approach, which does not depend directly on the misclassifica-
tion probability. The misclassification probability is an overall statistical measure like R2 in linear
regression. Rather a data-specific influential measure would be more meaningful in understanding the
impact of different observations. The intuitive interpretation of the new measure should be appealing
to practitioners since it provides additional information about the impact on the rest of observations
when one data point is deleted.
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Figure 1: Scatterplot for the lung function data set: The discriminant function with full data set (solid line) and
when case 1 is excluded (dotted line).

3. Graphical Methods for the Influence Detection

Before we introduce the new measure, we describe a real examples from the literature. The data set
is taken from Campbell (2001). It is composed of two groups with 7 nonasthmatic children and 8
asthmatic children with two variables: children’s pulmonary anatomical dead space, and their height
measured in cm. From Figure 1, the solid line gives the sample discriminant function and it is clear
that the child 1 has been misclassified. Furthermore, if the child 1 is excluded from the data set, the
discriminant function shown with the dotted line changes significantly.

It is clear from the plot that we can obtain perfect separation into two groups for the data set when
child 1 is excluded. The difference of estimated overall misclassification probability between with
child 1 and without child 1 is also the largest among others, but the magnitude of the difference of
misclassification probability is small

Φ

(
−1

2
∆

)
− Φ

(
−1

2
∆(1)

)
= 0.420118 − 0.35108 = 0.069038,

where ∆ is the sample Mahalanobis distance between two sample mean centroids and ∆(1) is the
corresponding value without the first observation.

The Mahalanobis distance depends on the difference between mean vectors for the two groups. It
is interesting to check the magnitude of directional change of group mean if a certain observation is
deleted. Figure 2 shows the group mean movement plot. We immediately see that the exclusion of the
observation for child 1 leads to a relatively large size of change of the group mean centroid, especially
the group mean centroid for nonasthmatic children.

Note that the misclassification probability still exists even when the child 1 is excluded. Nonethe-
less we conclude that observation 1 is influential since child 1 gives the largest change in the location
of the group centroids. In this regard it seems that there is a need to have more data-specific statistical
measures than one based on the overall misclassification probability. We now propose an alternate
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Figure 2: Group mean movement plot for the lung function data set: The thick arrow corresponds to the group
mean centroids for each group obtained by excluding child 1.

measure which is simpler than the statistical measures previously developed and largely based on
misclassification probability.

As we have mentioned in Section 1, the concept of the misclassification probability has been the
cornerstone in detecting influential observations in the past.

Since the misclassification probability is an overall measure, the introduction of a data specific
measure could be a beneficial complement. We consider the individual posterior classification as
stated below

P(Π1|x) =
π1 f1(x)

π1 f1(x) + π2 f2(x)
= 1 − P(Π2|x).

Note that the decision rule to classify the observation x0 to Π1 when P(Π1|x0) > P(Π2|x0) is
equivalent to finding the discriminant function that minimizes the overall misclassification probability
and expected cost of misclassification under equal misclassification cost for both groups. Therefore
it is comparable to deal with the change of posterior probabilities rather than the mathematical form
of misclassification probability. Suppose we are interested in the effect of omission of an observation
on the change of posterior probabilities. Now we are interested in the total of change of posterior
probability in an absolute sense

D(i) =
2∑

k=1

n∑
j

∣∣∣∣P (
Πk |x j

)
− P

(
Πk |x j(i)

)∣∣∣∣ , (3.1)

where P(Πk |x j(i)) is the posterior probability of the jth observation when the ith observation is omitted.
It is reasonable when j = i, to set P(Πk |x j) − P(Πk |x j(i)) = 0. This quantity is interpreted as the

total of change of two posterior probabilities coming from a full and reduced data set. We have n
reduced data sets to consider all of the leave-one-out cases. To complement the numerical summary,
we suggest the following (3.2) for the D(i) plot which shows a graphical summary of(

D̄
)
+ cS D, c = 1, 2, 3, (3.2)
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Figure 3: D(i) plot for the lung function data set.

where (D̄) and S D is the mean and standard deviation of D(i), respectively. Choosing c = 1, 2, 3 for
reference cutoff lines may be natural to match with typical choices based on summaries involving the
standard deviation. When D(i) is inside the line set by c = 1, 2, we call the change in the posterior
probability weak and mild respectively. If D(i) is outside the line set by c = 3, we call it extremely
influential in terms of the difference between the two posterior probabilities. These cutoff lines are
intuitive and not new in the literature. See Moreno-Roldán et al. (2007).

In addition to the information about the possible influential and outlying observations, we illustrate
the ability to look at the detailed movement of other individual data points. Figure 3 shows D(i) plot
for the lung data set. We conclude that child 1 is an extremely influential data point and child 8 may
be weakly influential. We found a very similar pattern from both the lmax and Bi index plots in Figure
4. Our graphical approach is not strictly formal, but it does reflect similar information as the local
influence approach.

We also suggest another graphical display once observation 1 is identified as influential. We look
at the movement of other data points in terms of their changing posterior probabilities. Figure 5
shows the Posterior probability movement plot, which illustrates that all of the other observations
have a better separation direction once child 1 is removed. We would be unable to obtain this detailed
information if we deal with the influential data points in terms of misclassification probabilities. This
suggests why a more data-dependent influential measure than the overall influence measure based on
Φ(−(1/2)∆) can be beneficial.

If observation 1 is omitted, observations 4, 5, 8, 11 show large changes in their posterior prob-
abilities, as seen in Figure 5. For this example, no observation changes its membership, but this is
not guaranteed in other cases. Even when a data point turns out to be very influential, it does not
mean that its membership will automatically change. This depends on the incremental changes to the
discriminant function.

The second data set considered is the Conn’s syndrome data obtained from Aitchison and Dun-
smore (1975) that was also analyzed by Critchley and Vitiello (1991) and Poon (2004). It consists of
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Figure 4: (a) lmax index plot and (b) Bi index plot for the lung function data set.

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Influencer: 1      Diff= 1.90806459230599

Influenced Observation

P
os

te
rio

r 
P

ro
ba

bi
lit

y

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Influencer: 1      Diff= 1.90806459230599

Influenced Observation

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Figure 5: Posterior probability movement plot with observation 1 omitting in the lung function data set.

31 patients confirmed to have adenoma (group 1) and bilateral hyperplasia (group 2), n1 = 20, n2 = 11.
It has two variables: the concentrations of potassium and renin in the patients’ blood plasma. The
scatter plot of the data in Figure 6 shows 4 observations (5, 18, 24, 27) are misclassified and several
outlying values.

Figure 7 shows D(i) plot for the Conn’s syndrome data set. We could conclude that observations
5 and 27 are two mildly influential data points and observations 18, 21, 24 and 31 are the four weakly
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Figure 6: Scatterplot for Conn’s syndrome data set: (solid line) the discriminant function.
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Figure 7: D(i) plot for Conn’s syndrome data set.

influential. It is interesting that the two weak influential data points, observations 21 and 31, are
extreme values of group 2 in Figure 6. Figure 8 shows the lmax and B(i) index plots for the same data.
There are different rankings of the observations based on these criteria and the plot. Figure 8 can be
helpful to understand the relative contributions to the influence of the identified observations.

Figure 9 shows the corresponding posterior probability movement plots when observations 5,
18, 21, 24, 27, 31 are individually omitted from the Conn’s syndrome data set. Figure 9 shows the
magnitude of change and direction of other observation in terms of their posterior probabilities when
a specific data point is omitted. When observations 5, 21 and 31 are omitted, observations 14 and
27 change their membership group. Figure 6 indicates that observations 14 and 27 are close to the
discriminant function. Observations 21 and 31 are not influential using Cook’s approach, but do
prompt two observations to change their membership. Interestingly, deleting either of observations
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Figure 8: (a) lmax index plot and (b) Bi index plot for Conn’s syndrome data set.

21 and 31 results in an undesirable shift in direction for most observations in group 1, while omitting
observation 5 has a desirable impact. Most observations in group 1 move outward toward 1.0 and
most observations in group 2 move toward 0 with observation 5 omitted, while most observations in
group 1 move inward toward 0.5 undesirably with each observations of 21, and 31 deleted.

When observation 18 is omitted, observation 27 changes its membership group with a large shift
in value. When observation 24 is deleted, no observations change membership. For observation 27,
observation 18 changes its membership with a large shift in value.

4. Conclusion

The local influence approach for discriminant analysis is becoming more popular since it is free of the
dominating and masking effects often encountered with the leave-one-out approach in detecting influ-
ential observations. In this paper, we suggest another leave-one-out statistical measure to detect the
influential data points in discriminant analysis. Despite the weakness of leave-one-out approaches, the
newly proposed graphical summaries perform the similar mission as Cook’s local influence approach
with additional information obtained regarding the cut-off criterion. The D(i) plot as well as the lmax

and Bi index plots provide straightforward approaches to assess the impact of removing any observa-
tion in a dataset and quantifying the robustness of the results for leave-one-out subsets of the data. We
think that the newly proposed plots and the existing local influence approach will complement each
other.

Once an observation has been identified as potentially influential, the posterior probability move-
ment plot provides a summary of the effect on the change of posterior probabilities for other data
points. The plot also provides meaningful information about how the membership group for any
observation changes and how misclassification is impacted when an observation is removed.
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Figure 9: Posterior probability movement plots when observations 5, 18, 21, 24, 27, 31 are omitted for the Conn’s
syndrome data set.
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