References
- Aggarwal, C. C. and Zhai, C. (2012), Mining text data, Springer.
- Akimoto, M. (2010), Language Change and Variation from Old English to Late Modern English, Peter Lang. New York, U.S.
- Bird, S. (2006), NLTK : the natural language toolkit, In Proceedings of the COLING/ACL on Interactive presentation sessions, 69-72.
- Chakraborty, G., Pagolu, M., and Garla, S. (2013), Text Mining and Analysis : Practical Methods, Examples, and Case Studies Using SAS, SAS Institute.
- Chen, Y. T. and Chen, M. C. (2011), Using chi-square statistics to measure similarities for text categorization, Expert systems with applications, 38, 3085-3090. https://doi.org/10.1016/j.eswa.2010.08.100
- Cho, S. G. and Kim, S. B. (2012), Finding Meaningful Pattern of Key Words in IIE Transactions Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 38(1), 67-73. https://doi.org/10.7232/JKIIE.2012.38.1.067
- Cho, G. H., Lim, S. Y., and Hur, S. (2014), An Analysis of the Research Methodologies and Techniques in the Industrial Engineering Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 40(1), 52-59. https://doi.org/10.7232/JKIIE.2014.40.1.052
- Chris, D. P. (1990), Another Stemmer, ACM SIGIR Forum, 24(3), 56-61. https://doi.org/10.1145/101306.101310
- Gillani, S. A. and Ko, A. (2014), Process-based knowledge extraction in a public authority : A text mining approach, In Electronic Government and the Information Systems Perspective, 91-103.
- Gordon, A. D. (1999), Classification, Champman and Hall, New York, USA.
- Hartigan, J. A. (1975), Clustering Algorithms, John Wiley and Sons, New York, USA.
- Hu, X. and Liu, H. (2012), Text analytics in social media, Mining text data, 385-414.
- Huang, A. (2008), Similarity measures for text document clustering, Proceedings of the sixth new zealand computer science research student conference, 49-56.
- Hung, J. L. and Zhang, K. (2012), Examining mobile learning trends 2003-2008 : A categorical meta-trend analysis using text mining techniques, Journal of Computing in Higher Education, 24(1), 1-17. https://doi.org/10.1007/s12528-011-9044-9
- Jain, A. K. and Dubes, R. C. (1988), Algorithms for clustering data, Prentice-Hall, Inc.
- Jivani, A. G. (2011), A comparative study of stemming algorithms, Int. J. Comp. Tech. Appl, 2(6), 1930-1938.
- Julia, B., Silvia, C., and Giuliana, D. (2013), Variation and Change in Spoken and Written Discourse : Perspectives from Corpus Linguistics, John Benjamins publishing company, Philadelphia, U.S.
- Kam, J. S., Kim, M. W., and Hyun, B. H. (2013), A Study on Analysis of Patent Information Based Biotechnology Research Trend and Promising Research Themes, The Korea Society for Innovation Management and Economics, 21(2), 25-56.
- Kim, H. Y. (2013), Analysis of an Inaugural Address of Korean Presidents Based on Network, Korea Content Association, 3(2), 67-68.
- Kim, H. Y., Kim, H. G., and Kang, B. M. (2012), A Trend Analysis of Curtural comsumption Based on Newspaper Texts, Journal of KIISE : Software and Applications, 39(3), 244-251.
- Kim, H. (2014), A Study on Presidential Leadership and Policy Agenda Setting Pattern : A Content Analysis of Korean Presidential Addresses, Journal of Korean Politics, 23(2), 77-102.
- Kim, M. and Koo, P. (2013), A Study on Big Data Based Investment Strategy Using Internet Search Trends, Journal of the Korean Operations Research and Management Science Society, 38(4), 53-64. https://doi.org/10.7737/JKORMS.2013.38.4.053
- Kim, M., Notkin, D., Grossman, D., and Wilson, G. (2013), Identifying and summarizing systematic code changes via rule inference, Software Engineering, IEEE Transactions on, 39, 45-62. https://doi.org/10.1109/TSE.2012.16
- Kim, Y., Tian, Y., Jeong, Y., Jihee, R., and Myaeng, S. H. (2009), Automatic discovery of technology trends from patent text. Proceedings of the 2009 ACM symposium on Applied Computing, 1480-1487.
- Lee, Y. J., Seo, J. H., and Choi, J. T. (2014), Fashion Trend Marketing Prediction Analysis Based on Opinion Mining Applying SNS Text Contents, The Journal of Korean Institute of Information Technology, 12(12), 163-170.
- Lim, E. T. (2002), Five trends in presidential rhetoric : An analysis of rhetoric from George Washington to Bill Clinton, Presidential Studies Quarterly, 32(2), 328-348. https://doi.org/10.1111/j.0360-4918.2002.00223.x
- Liu, B. (2012), Sentiment analysis and opinion mining, Synthesis Lectures on Human Language Technologies, 5(1), 1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
- Lovins, J. B. (1968), Development of a stemming algorithm, MIT Information Processing Group, Electronic Systems Laboratory.
- Min, K. Y., Kim, H. T., and Ji, Y. G. (2014), A Pilot Study on Applying Text Mining Tools to Analyzing Steel Industry Trends : A Case Study of the Steel Industry for the Company "P", Society for EBusiness Studies, 19(3), 51-64.
- Pai, M. Y., Chen, M. Y., Chu, H. C., and Chen, Y. M. (2013), Development of a semantic-based content mapping mechanism for information retrieval, Expert Systems with Applications, 40, 2447-2461. https://doi.org/10.1016/j.eswa.2012.10.056
- Park, H., Seo, W., Coh, B., Lee, J. and Yoon, J. (2014), Technology Opportunity Discovery Based on Firms' Technologies and Products, Journal of the Korean Institute of Industrial Engineers, 40(5), 442-450. https://doi.org/10.7232/JKIIE.2014.40.5.442
- Porter, M. (2001), Snowball : A language for stemming algorithms, http://snowball.tartarus.org/texts/introduction.html.
- Porter, M. F. (1980), An algorithm for suffix stripping, Program : electronic library and information systems, 14(3), 130-137. https://doi.org/10.1108/eb046814
- Pramokchon, P. and Piamsa-nga, P. (2014), A feature score for classifying class-imbalanced data, In Computer Science and Engineering Conference (ICSEC), 409-414.
- Rajaraman, A. and Ullman, J. D. (2011), Mining of massive datasets, Cambridge University Press.
- Rebholz-Schuhmann, D., Kirsch, H., and Couto, F. (2005), Facts from text-Is text mining ready to deliver?, PLoS biology, 3(2), e65. https://doi.org/10.1371/journal.pbio.0030065
- Rousseeuw, P. J. (1987), Silhouettes : a graphical aid to the interpretation and validation of cluster analysis, Journal of computational and applied mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Rowie, S. T. and Saul, L. K. (2000), Nonlinear Dimensionality Reduction by Locally Linear Embedding, SCIENCE, 290(5500), 2000-2326.
- Saul, L. K., and Roweis, S. T. (2000), An Introduction to Locally Linear Embedding, http://cs.nyu.edu/-roweis/lle/publications.html.
- Zhang, J., Kawai, Y., and Kumamoto, T. (2010), A Flexible Re-ranking System Based on Sub-keyword Extraction and Importance Adjustment, IAENG International Journal of Computer Science, 37(3), 1-8.
Cited by
- An Analysis of Causes of Marine Incidents at sea Using Big Data Technique vol.24, pp.4, 2018, https://doi.org/10.7837/kosomes.2018.24.4.408