DOI QR코드

DOI QR Code

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion

인지적 색 차이 기반의 이미지 품질 평가 기법 및 왜곡 종류에 따른 평가 시스템 제안

  • 이지용 (아주대학교 전자공학과) ;
  • 김영진 (아주대학교 전자공학과)
  • Received : 2015.06.10
  • Accepted : 2015.08.10
  • Published : 2015.10.15

Abstract

A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.

현재까지 인간 시각 체계를 정확하게 반영하기 위한 이미지 평가 기법에 대한 연구가 많이 이루어져 오고 있다. SSIM은 인간의 시각 체계가 이미지의 구조적 정보에 예민하다는 점을 이용하여 구조적 정보를 이용하여 이미지를 평가하는 대표적인 인간 시각 체계를 만족시키는 평가 기법이다. 하지만 SSIM은 이미지의 색 차이를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해, HSI 색 공간을 활용한 SHSIM 기법이 제안되었으나 두 컬러 이미지 간 인지적 색 차이를 충분히 반영하지는 못하고 있다. 본 논문에서는 CIE Lab 색 공간을 도입하여 대응 되는 픽셀들의 인지적 색 차이를 계산하여 이미지 평가에 활용하는 방법을 제안한다. 그리고 연구를 더 확장하여, SVM 분류기를 활용하여 왜곡 종류에 따라 최적의 평가 수식을 적용하는 최적화 시스템을 제안한다. 제안하는 기법을 평가하기 위해, 이미지 평가분야에서 가장 많이 알려진 LIVE 데이터베이스를 사용하였으며 네 종류의 평가 기준들을 이용하였다. 실험 결과에서는 제안하는 기법이 다른 기법들보다 인간 시각 체계와 더 상관성이 높다는 것을 보여준다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. K. Thung and R. Paramesran, "A survey of image quality measures," Proc. of International Conference for Technical Postgraduates (TECHPOS), pp. 1-4, 2009.
  2. Z. Wang and A. C. Bovik, "A universal image quality index," IEEE Signal Processing Letter, Vol. 9, No. 3, pp. 81-84, Mar. 2002.
  3. Z. Wang and A. C. Bovik, "Mean squared error: love it or leave it?," IEEE Signal Process. Mag. 26(1) pp. 98-117, 2009. https://doi.org/10.1109/MSP.2008.930649
  4. Z. Wang, A. C. Bovik, H. R. Sheikh, and E, P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, No. 4, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861
  5. CIE, International Commission on Illumination, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms, Supplement no. 2 to CIE Publication no. 15, 1971 and 1978.
  6. C. Cortes, and V. Vapnik, "Support-vector networks," Machine learning, Vol. 20, No. 3, pp. 273-297, Sep. 1995. https://doi.org/10.1007/BF00994018
  7. L. C. H. R. Sheikh, Z. Wang, and A. C. Bovik, "Live image quality assessment database release 2," 2007. [Online] Available: http://live.ece.utexas.edu/
  8. H. R. Sheikh, M. Sabir, and A. C. Bovik, "A statistical evaluation of recent full reference image quality assessment algorithms," IEEE Transaction.
  9. Y. Shi, Y. Ding, R. Zhang, and J. Li, "Structure and hue similarity for color image quality assessment," Proc. of International Conference for Electronic Computer Technology, pp. 329-333. 2009.
  10. R. C. Gonzalez and R. E. Woods, Digital Image Processing (2nd edition), Publishing House of Electronics, 2002.
  11. G.H. Chen, C.L. Yang, and S.L. Xie, "Gradient-based structural similarity for image quality assessment," Proc. ICIP, pp. 2929-2932, 2006.
  12. G.H Chen and C.L Yang, "Edge-based structural similarity for image quality assessment," Proc. of International conference of Image processing, 2006, pp. 2929-2932.
  13. M. J. Chen and A. C. Bovik, "Fast structural similarity index algorithm," Journal of Real-Time Image Processing, Vol. 6, No. 4, pp. 281-287, 2011. https://doi.org/10.1007/s11554-010-0170-9
  14. M.A. Webster, "Human colour perception and its adaptation," Network: Computation in Neural Systems, Vol. 7, No. 4, pp. 587-634, Nov. 1996. https://doi.org/10.1088/0954-898X_7_4_002
  15. A. Ford and A Roberts, "Color space conversions," Westminster University, London, pp. 1-31, 1998.
  16. C. Spearman, "The proof and measurement of association between two things," American Journal of Psychology, Vol. 15, No. 1, pp. 72-101, Jan. 1904. https://doi.org/10.2307/1412159
  17. M. G. Kendall, "A new measure of rank correlation," Biometrika, Vol. 30, pp. 81-89, 1938. https://doi.org/10.1093/biomet/30.1-2.81