DOI QR코드

DOI QR Code

RPL 기반 IoT 무선 네트워크에서 노드 병목 및 전송 경로 품질을 고려한 라우팅 기법

A Routing Scheme Considering Bottleneck and Route Link Quality in RPL-based IoT Wireless Networks

  • 정익주 (부산대학교 전자전기컴퓨터공학과) ;
  • 정상화 (부산대학교 정보컴퓨터공학부) ;
  • 이성준 (부산대학교 전자전기컴퓨터공학과)
  • 투고 : 2015.01.27
  • 심사 : 2015.07.28
  • 발행 : 2015.10.15

초록

사물인터넷(IoT)에 연결된 다수의 장치를 관리하기 위해서 IETF는 IPv6를 지원하는 RPL 라우팅 프로토콜을 제안하였다. RPL은 사물인터넷이 구축되는 네트워크에서 요구되는 서비스에 맞는 OF(Objective Function)를 통해 경로가 생성된다. RPL에서는 단순하게 노드 간 링크 품질만을 고려하여 경로를 구축하므로, 다양한 목적의 QoS를 제공할 수 있는 OF에 대한 연구가 필요하다. 기존의 연구에서는 주로 에너지 소비 감소를 다루고 있고, 싱크 노드까지 형성된 경로의 링크 품질을 고려하지 않고 있어 종단 간 지연시간이 늘어 날 수 있다. 본 논문에서는 트래픽이 몰려 병목현상이 일어나는 노드의 예상 수명과 목적지까지 형성될 전체 경로의 품질을 고려하여 지연시간을 줄이는 기법을 제안한다. 실험을 통해 제안 기법의 가중치를 설정하였고, 종단 간 지연시간을 약 20.8%, 에너지 소비를 약 10.5% 개선하였음을 보였다.

In order to manage a large number of devices connected to the Internet of Things (IoT), the Internet Engineering Task Force (IETF) proposed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). The route of the RPL network is generated through the use of an Objective Function (OF) that is suitable for the service that is required for the IoT network. Since the route of the RPL network is conventionally simply chosen only by considering the link quality between the nodes, it is sensible to seek an OF that can also provide better Quality of Service (QoS). In previous studies, the end-to-end delay might possibly be sub-optimal because they only deal with problems related to the reduction of energy consumption and not to the link quality on the path to the sink node. In this study, we propose a scheme that reduces the end-to-end delay but also gives full consideration to both the quality on the entire route to the destination and to the expected lifetime of nodes with bottlenecks from heaped traffic. Weighting factors for the proposed scheme are chosen by experiments and the proposed scheme can reduce the end-to-end delay and the energy consumption of previous studies by 20.8% and 10.5%, respectively.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. S. Kim, J. Jeong, J. Song, H. Kim, "Trends of IoT Device Platforms and Building its Ecosystems," 2014 Electronics and Telecommunications Trends, Vol. 29, No. 4, pp. 82-90, Aug. 2014. (in Korean)
  2. C. Pyo, H. Kang, N. Kim, H. Bang, "IoT(M2M) Technology Trends and Development Prospect," Information & Communications Magazine, Vol. 30, No. 8, pp. 3-10, July. 2013.(in Korean)
  3. T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP. Vasseur, and R. Alexander, "RPL:IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC6550," Internet Engineering Task Force, Mar. 2012 [Online]. Available: https:// datatracker.ietf.org/doc/rfc6550
  4. Y. Yu, R. Govindan, and D. Estrin, "Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks," Technical Report UCLA/CSD-TR-01-0023, UCLA Computer Science Department, May. 2001.
  5. B. Nath and D. Niculescu, "Routing on a curve," ACM SIGCOM Computer Communication Review, Vol. 33, No. 1, pp. 155-160, Jan. 2003. https://doi.org/10.1145/774763.774788
  6. F. Mourad, H. Snoussi, and C. Richard, "Intervalbased localization using RSSI comparison in MANETs," IEEE Transactions on Aerospace and Electronic System, Vol. 47, No. 4, pp. 2897-2910, Oct. 2011. https://doi.org/10.1109/TAES.2011.6034672
  7. D.S.J. DeCouto, D. Aguayo, J. Bicket, and R. Morris, "A High-Throughput Path Metric for Multihop Wireless Routing," Proc. of ACM Mobicom Conference, pp. 134-146, Sept. 2003.
  8. Z. Guo, Q. Wang, M. Li, J. He, "Fuzzy Logic Based Multidimensional Link Quality Estimation for Multi-Hop Wireless Sensor Networks," IEEE Sensors Journal, pp. 3605-3615, Jul. 2013.
  9. B. Cho, J. Lee, H, Park, "Routing algorithm using channel based hop counting for wireless ad-hoc networks," IEEE 6th International Conference on Advanced Communication Technology (ICACT) 1, pp. 1077-1079, Feb. 2014.
  10. L. Li and Y. Halpern, "Minimum-energy mobile wireless networks revisited," Proc. of IEEE ICC 01', pp. 278-283, Jun. 2001.
  11. J. Chang and L. Tassiulas, "Maximum Lifetime Routing in Wireless Sensor Networks," IEEE/ACM transactions on Networking, Vol. 12, No. 4, pp. 609-619, Aug. 2004. https://doi.org/10.1109/TNET.2004.833122
  12. H. Yoo, M. Shim, D. Kim, K. Kim, "GLOBAL: A Gradient-based routing protocol for load-balancing in large-scale wireless sensor networks with multiple sinks," IEEE Symposium on Computers and Communications (ISCC), pp. 556-562, Jun. 2010.
  13. P.O. Kamgueu, E. Nataf, T. Djotio, O. Festor, "Energy-Based Routing Metric for RPL," Research Report RR-8208 informatics mathematics, pp. 3-14, Jun. 2012.
  14. JP. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks RFC 6551, Internet Engineering Task Force, Mar. 2012 [Online]. Available: https://datatracker.ietf.org/doc/rfc6551
  15. P. Huang, H. Chen, G. Xing, Y. Tan, "SGF: A state-free gradient-based forwarding protocol for wireless sensor networks," ACM Transactions on Sensor Networks (TOSN), Vol. 5, No. 2, Article 14, pp. 1-25, Mar. 2009.
  16. T. He, J.A. Stankovic, C. Lu, and T. Abdelzaher, "SPEED: A stateless Protocol for Real-Time Communication in Sensor Networks," Proc. of 23rd International Conference on Distributed Computing System, pp. 46-55, May. 2003.
  17. J. Heo, J. Hong, and Y. Cho, "EARQ: Energy aware routing for real-time and reliable communication in wireless industrial sensor network," IEEE Transactions on Industrial Informatics, Vol. 5, No. 1, pp. 3-11, Mar. 2009. https://doi.org/10.1109/TII.2008.2011052
  18. O. Iova, F. Theoleyre, and T. Noel, "Improving the network lifetime with energy-balancing routing: Application to RPL," IEEE Wireless and Mobile Networking Conference (WMNC) 7th IFIP, pp. 1-8, May. 2014.
  19. IEEE Std. 802.15.4-2011: "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)," IEEE Standard for Information Technology, Sept. 2011.
  20. MTM-CM5000-MSP, Maxfor, Low Power, Multi-hop network with IEEE 802.15.4, external Flash Memory 1MBytes [Online]. Available: http://www.maxfor.co.kr
  21. MSP430F1611, Texas Instruments, 16-bit Ultra-Low-Power MCU, 48kB Flash, 10KB RAM [Online]. Available: http://www.ti.com/product/msp430f1611
  22. CC2420, Texas Instruments, Single-Chip 2.4GHz IEEE 802.15.4 Compliant RF Transceiver [Online]. Available: http://www.ti.com/product/CC2420