DOI QR코드

DOI QR Code

An Interference Reduction Scheme Using AP Aggregation and Transmit Power Control on OpenFlow-based WLAN

OpenFlow가 적용된 무선랜 환경에서 AP 집단화 및 전송 파워 조절에 기반한 간섭 완화 기법

  • 도미림 (부산대학교 전자전기컴퓨터공학과) ;
  • 정상화 (부산대학교 정보컴퓨터공학부) ;
  • 안창우 (부산대학교 전자전기컴퓨터공학과)
  • Received : 2014.07.30
  • Accepted : 2015.08.08
  • Published : 2015.10.15

Abstract

Recently, excessive installations of APs have caused WLAN interference, and many techniques have been suggested to solve this problem. The AP aggregation technique serves to reduce active APs by moving station connections to a certain AP. Since this technique forcibly moves station connections, the transmission performance of some stations may deteriorate. The AP transmit power control technique may cause station disconnection or deterioration of transmission performance when power is reduced under a certain level. The combination of these two techniques can reduce interference through AP aggregation and narrow the range of interferences further through detailed power adjustment. However, simply combining these techniques may decrease the probability of power adjustment after aggregation and increase station disconnections upon power control. As a result, improvement in performance may be insignificant. Hence, this study suggests a scheme to combine the AP aggregation and the AP transmit power control techniques in OpenFlow-based WLAN to ameliorate the disadvantages of each technique and to reduce interferences efficiently by performing aggregation for the purpose of increasing the probability of adjusting transmission power. Simulations reveal that the average transmission delay of the suggested scheme is reduced by as much as 12.8% compared to the aggregation scheme and by as much as 18.1% compared to the power control scheme. The packet loss rate due to interference is reduced by as much as 24.9% compared to the aggregation scheme and by as much as 46.7% compared to the power control scheme. In addition, the aggregation scheme and the power control scheme decrease the throughput of several stations as a side effect, but our scheme increases the total data throughput without decreasing the throughput of each station.

최근 무분별한 액세스 포인트 설치로 인해 무선랜 간섭이 많이 발생하고 있으며, 이러한 문제를 해결하기 위해 많은 기법이 제안되었다. 액세스 포인트 집단화 기법은 특정 액세스 포인트로 스테이션의 연결을 이동시켜 전송을 수행하는 액세스 포인트를 줄이는 방식이다. 이 방식은 스테이션의 연결을 강제로 이동시키므로 특정 스테이션의 전송 성능 저하가 발생할 수 있다. 액세스 포인트 전송 파워 조절 기법의 경우 연결이 끊어지는 스테이션이 발생하거나 특정 값 이하로 파워를 조절할 경우 전체적인 전송 성능 감소가 일어날 수 있다. 두 기법을 결합하면 집단화를 통해 전송을 수행하는 액세스 포인트가 줄어 간섭이 줄어들고 세부적인 전송 파워 조절을 통해 간섭 범위를 더 줄일 수 있다. 그러나 두 기법을 단순 결합하면 집단화 수행 후에 파워 조절이 가능한 경우의 수가 적어지거나 파워 조절 시 연결이 끊어지는 스테이션이 늘어나 성능 향상이 단일 기법보다 미미한 상황이 발생할 수 있다. 그러므로 본 논문에서는 OpenFlow 기반 무선랜 환경에서 액세스 포인트 집단화 기법, 파워 조절 기법을 결합하여 각 기법의 단점을 보완하고 집단화를 수행할 때 다음 단계 전송 파워 조절 수행 시 파워 조절 가능한 경우의 수가 많아지도록 고려하여 간섭을 효율적으로 완화하는 기법을 제안한다. 시뮬레이션을 통해 각 기법을 비교한 결과 제안 기법의 평균 전송 지연 시간은 집단화 기법에 비해 최대 12.8%, 파워 조절 기법에 비해 최대 18.1% 감소하고, 간섭에 의한 패킷 손실률은 제안 기법이 집단화 기법에 비해 최대 24.9%, 파워 조절 기법에 비해 최대 46.7% 감소하였다. 또한 집단화 기법과 파워 조절 기법은 특정 스테이션의 데이터 처리율이 감소하는 부작용이 발생하는 반면 제안 기법은 특정 스테이션의 처리율 감소 없이 전체 데이터 처리율을 증가시킴을 확인할 수 있었다.

Keywords

References

  1. 802.11-2012 - IEEE Standard for Information technology-Specific requirements Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [Online]. Available: http://standards.ieee.org/findstds/standard/802.11-2012.html (downloaded 2015, Aug. 17)
  2. M. A. Ergin, K. Ramachandran, M. Gruteser, "Understanding the Effect of Access Point Density on Wireless LAN Performance," Proc. of the 13th annual ACM International Conference on Mobile Computing and Networking, pp. 350-353, 2007.
  3. Software-Defined Networking: The New Norm for Networks [Online]. Available: https://www.opennetworking.org/ (downloaded 2015, Aug. 17)
  4. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM Computer Communication Review, Vol. 38, No. 2, pp. 69-74, Apr. 2008. https://doi.org/10.1145/1355734.1355746
  5. OpenFlow Switch Specification 1.0.0 [Online]. Available: https://www.opennetworking.org/technical-communities/areas/specification (downloaded 2015, Aug. 17)
  6. OpenFlow Switch Specification 1.4.0 [Online]. Available: https://www.opennetworking.org/technical-communities/areas/specification (downloaded 2015, Aug. 17)
  7. P. Dely, A. Kassler, N. Bayer, "Openflow for Wireless Mesh Networks," Proc. of the 20th IEEE International Conference on Computer Communications and Networks, pp. 1-6, 2011.
  8. L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, T. Vazao, "Toward programmable enterprise WLANs with Odin," Proc. of the first workshop on Hot topics in software defined network, pp. 115-120, 2012.
  9. Y. Cai, J. Luo, "A Dynamic Power Control Scheme Based on NetFlow for Reducing WLAN Interference," Proc. of the 8th IEEE International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-5, 2012.
  10. K. Li, Z. Zhang, "Dynamic Transmit Power Control Algorithm in Centralized Wireless Local Area Network," Proc. of the 3rd IEEE International Conference on Consumer Electronics, Communications and Networks, pp. 304-307, 2013.
  11. D. Yueli, S. Bin, "A Distributed Dynamic Power Control Algorithm for Efficient Processing Self-Interference in WLAN/WPANs," Proc. of the IEEE International Conference on Network Computing and Information Security, Vol. 1, pp. 329-331, 2011.
  12. B. Park, Y. Kwon, S. Bae, M. Chung, "Implementation of connection management scheme of mobile stations in IEEE 802.11 WLAN APs considering transmission power control," Proc. of the IEEE TENCON Spring Conference, pp. 515-519, 2013.
  13. T. Nagai, H. Shigeno, "A Framework of AP Aggregation Using Virtualization for High Density WLANs," Proc. of the 3rd IEEE International Conference on Intelligent Networking and Collaborative Systems, pp. 350-355, 2011.
  14. H. Shindo, T. Nagai, H. Shigeno, "Virtual Access Point Allocation Method for High Density WLANs," Proc. of the 6th International Conference on Mobile Computing and Ubiquitous Networking, pp. 69-76, 2012.
  15. N. Funabikiy, M. E. Islam, T. Nakanishi, K. Watanabe, "A Proposal of Access-Point Aggregation Approach for Multiple Wireless Local Area Networks," Proc. of the 6th IEEE International Conference on Complex, Intelligent and Software Intensive Systems, pp. 677-682, 2012.
  16. K. Zhou, X. Jia, L. Xie, Y. Chang, "Channel assignment for WLAN by considering overlapping channels in SINR interference model," Proc. of the IEEE International Conference on Computing, Networking and Communications, pp. 1005-1009, 2012.
  17. L. Chen, D. Liu. M. He, Z. Liu, "A wireless Channel Allocation Algorithm with the Minimum Interference," Proc. of the IEEE Conference on Computing, Communications and Applications Conference, pp. 81-84, 2012.
  18. X. Yang, N. Vaidya, "A Spatial Backoff Algorithm Using the Joint Control of Carrier Sense Threshold and Transmission Rate," Proc. of the 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 501-511, 2007.
  19. H. Jung, T. T. Kwon, K. Cho, Y. Choi, "REACT: Rate Adaptation using Coherence Time in 802.11 WLANs," Journal of Computer Communications, Vol. 34, No. 11, pp. 1316-1327, Jul. 2011. https://doi.org/10.1016/j.comcom.2011.01.011
  20. L. Li, Z. Fan, D. Kaleshi, "Using multiple metrics for rate adaptation algorithms in IEEE 802.11 WLANs," Proc. of the IEEE Conference on Wireless Communications and Networking, pp. 2807-2812, 2012.