DOI QR코드

DOI QR Code

세포막 추출과 역추적 알고리즘 기반의 HeLa 세포 이미지 자동 셀 카운팅 기법

Automated Cell Counting Method for HeLa Cells Image based on Cell Membrane Extraction and Back-tracking Algorithm

  • 경민영 (한밭대학교 컴퓨터공학) ;
  • 박정호 (한밭대학교 생명현상융합연구센터) ;
  • 김명구 (한밭대학교 생명현상융합연구센터) ;
  • 신상모 (한밭대학교 생명현상융합연구센터) ;
  • 이현빈 (한밭대학교 컴퓨터공학)
  • 투고 : 2015.06.29
  • 심사 : 2015.07.30
  • 발행 : 2015.10.15

초록

셀 카운팅은 세포의 성장을 분석하는 방법으로써 생물학연구에서 가장 많이 사용된다. 최근까지도 다양한 자동 셀 카운팅 기법이 제안되고 있지만 암세포와 같이 분열 속도가 빠르고 군집하려는 성질을 갖는 세포들은 분리 및 검출이 쉽지 않아 세포 이미지 분석을 통하여 셀 카운팅의 신뢰도를 높이기가 어렵다. 본 논문에서는 암 연구의 연구재료로 매우 보편적으로 사용되는 HeLa 세포 이미지 분석을 이용한 자동 셀 카운팅 방법을 제시한다. 세포막 추출 기반의 세포 분할 알고리즘을 통하여 세포의 형태적 상황을 구분하고, 세포 간 경계가 희미한 세포군집 내의 세포 분할을 위하여 역추적 알고리즘을 사용함으로써 셀 카운팅 정확도를 높인다. 실험을 통하여 제안하는 세포 분할 알고리즘이 기존의 세포 분할 알고리즘에 비해 정확함을 입증하였고, 결과적으로 매우 높은 자동 셀 카운팅 정확도를 얻을 수 있음을 확인하였다.

Cell counting is extensively used to analyze cell growth in biomedical research, and as a result automated cell counting methods have been developed to provide a more convenient and means to analyze cell growth. However, there are still many challenges to improving the accuracy of the cell counting for cells that proliferate abnormally, divide rapidly, and cluster easily, such as cancer cells. In this paper, we present an automated cell counting method for HeLa cells, which are used as reference for cancer research. We recognize and classify the morphological conditions of the cells by using a cell segmentation algorithm based on cell membrane extraction, and we then apply a cell back-tracking algorithm to improve the cell counting accuracy in cell clusters that have indistinct cell boundary lines. The experimental results indicate that our proposed segmentation method can identify each of the cells more accurately when compared to existing methods and, consequently, can improve the cell counting accuracy.

키워드

과제정보

연구 과제 주관 기관 : 중소기업청

참고문헌

  1. J. J. M. Landry et al., "The genomic and transcriptomic landscape of a HeLa cell line," G3, Vol. 3, No. 8, pp. 1213-1224, Aug. 2013. https://doi.org/10.1534/g3.113.005777
  2. X. Zhang et al., "Cell-edge detection method based on canny algorithm and mathematical morphology," Proc. of the 3rd International Congress on Image and Signal Processing, pp. 894-897, 2010.
  3. E. D. Cheng et al., "Microscopic cell detection based on multiple cell image segmentations and fusion algorithms," Proc. of the 2nd International Conference on Biomedical Engineering and Informatics, pp. 1-7, 2009.
  4. F. J. Sanchez-Marin, "Automatic segmentation of contours of corneal cells," Computers in Biology and Medicine, Vol. 29, pp. 243-258, Jul. 1999. https://doi.org/10.1016/S0010-4825(99)00010-4
  5. C. A. C. Caetano et al., "Identification and segmentation of cells in images of donated corneas using mathematical morphology," Proc. of the 13th Brazilian Symposium on Computer Graphics and Image Processing, pp. 344, 2000.
  6. K. Zalewski and R. Buchholz, "Morphological analysis of yeast cells using an automated image processing system," Journal of Biotechnology, Vol. 48, pp. 43-49, Jul. 1996. https://doi.org/10.1016/0168-1656(96)01503-9
  7. K. Lim et al., "Cell image processing methods for automatic cell pattern recognition and morphological analysis of mesenchymal stem cells -An algorithm for cell classification and adaptive brightness correction-," Journal of Biosystems Engineering, Vol. 38, pp. 55-63, Mar. 2013. https://doi.org/10.5307/JBE.2013.38.1.055
  8. P. Bamford and B. Lovell, "Unsupervised cell nucleus segmentation with active contours," Signal Processing, Vol. 71, pp. 203-213, Dec. 1998. https://doi.org/10.1016/S0165-1684(98)00145-5
  9. K. Zhang et al., "Active contours with selective local or global segmentation: A new formulation and level set method," Image and Vision Computing, Vol. 28, pp. 668-676, Apr. 2010. https://doi.org/10.1016/j.imavis.2009.10.009
  10. M. Kass et al., "Snakes: Active contours models," International Journal of Computer Vision, Vol. 1, pp. 321-331, Jan. 1988. https://doi.org/10.1007/BF00133570
  11. S. Kothari et al., "Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques," Proc. of the Biomedical Imaging: From Nano to Macro, pp. 795-798, 2009.
  12. X. Bai et al., "Touching cells splitting by using concave points and ellipse fitting," Proc. of the Digital Image Computing: Techniques and Applications, pp. 271-278, 2008.
  13. L. Vincent and P. Soille, "Watershed in digital spaces: An efficient algorithm based on immersion simulations," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, pp. 583-598, Jun. 1991. https://doi.org/10.1109/34.87344
  14. J. Urban, "Automatic segmentation of HeLa cell images," arXiv:1101.2312v1 [cs.CV], Jan. 2011.
  15. I. Smal et al., "Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis," IEEE Trans. Medical Imaging, Vol. 27, No. 6, pp. 789-804, Jun. 2008. https://doi.org/10.1109/TMI.2008.916964
  16. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," Journal of Colloid and Interface Science, Vol. 179, No. 1, pp. 298-310, Apr. 1996. https://doi.org/10.1006/jcis.1996.0217
  17. O. Debeir et al., "Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes," IEEE Trans. Medical Imaging, Vol. 24, No. 6, pp. 697-711, Jun. 2005. https://doi.org/10.1109/TMI.2005.846851
  18. I. F. Sbalzarini and P. Koumoutsakos, "Feature point tracking and trajectory analysis for video imaging in cell biology," Journal of Structural Biology, Vol. 151, No. 2, pp. 182-195, Aug. 2005. https://doi.org/10.1016/j.jsb.2005.06.002
  19. S. Mukherjee et al., "Counting cells from microscopy videos without tracking individual cells," Proc. of the 11th International Symposium on Biomedical Imaging, pp. 465-468, 2014.