DOI QR코드

DOI QR Code

Artificial Potential Function for Driving a Road with Traffic Light

신호등 신호에 따른 차량 주행 제어를 위한 인공 전위 함수

  • 김덕수 (한국과학기술정보연구원 가시화기술개발실)
  • Received : 2015.06.17
  • Accepted : 2015.08.10
  • Published : 2015.10.15

Abstract

Traffic light rules are one among the most common and important safety rules as the directly correlate with the safety of pedestrians. Consequently, an algorithm is required to cause an automated (or semi-automated) vehicle to observe traffic light signals. We present a novel, artificial potential function to guide an automated vehicle through traffic lights. Our function consists of three potential function components representing the three traffic light colors: green, yellow, and red. The traffic light potential function smoothly changes an artificial potential field using the elapsed time for the current light and light conversion. Our traffic light potential function is combined with other potential functions to guide vehicles' movement and constructs the final artificial potential field. Using various simulations, we found or method successfully guided the vehicle to observe traffic lights while behaving like human-controlled cars.

본 논문은 신호등 신호에 따른 자율 주행 (또는 반-자율 주행) 차량의 주행 제어를 위한 인공 전위 함수(artificial potential function)를 제안한다. 신호등은 보행자의 안전과 직결된 일반적이면서도 가장 중요한 교통 신호 중 하나로서, 도로 위 자율 주행을 위해서는 차량이 교통 신호를 준수하게 해주는 주행 알고리즘의 설계가 중요하다. 본 논문은 세 가지 신호 색(녹색, 노랑, 빨강)으로 구성된 차량 신호등의 신호에 따라 차량의 움직임을 제어할 수 있는 인공 전위 함수를 제안한다. 제안된 인공 전위 함수는 세 가지 신호 색 각각에 대한 인공 전위 함수들로 구성되며, 신호에 따라 전위 함수가 전환되며 인공 전위 장(artificial potential field)을 변화시킨다. 제안된 신호등 전위 함수는 차량 주행을 위한 기존의 인공 전위 함수들과 결합되어 최종 인공 전위 장을 생성한다. 제안하는 방법은 시뮬레이션을 통해 다양한 신호등 상황에 대해 실험되었으며, 신호등의 신호에 따라 차량이 자연스럽게 반응하는 모습을 보여준다.

Keywords

References

  1. K. H. An, S. W. Lee, W. Y. Han, and J. C. Son, "Technology Trends of Self-Driving Vehicles," Electronics and Telecommunication Trends, Vol. 28, No. 5, pp. 35-44, 2013. (in Korean)
  2. WOLF, Michael T. BURDICK, Joel W., "Artificial potential functions for highway driving with collision avoidance," ICRA, pp. 3731-3736, 2008.
  3. O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," The International Journal of Robotic Research, 1986.
  4. H. Choset, K. M. Lynch, S. Hutchnison, G. Kantor, W. burgard, L. E. Kavraki, and S., "Thrun, Principle of Robot Motion: Theory, Algorithmsm and Implementation," MIT Press, 2005.
  5. Khatib, Oussama., "Real-time obstacle avoidance for manipulators and mobile robots," The international journal of robotics research, Vol. 5, No. 1 pp. 90-98, 1984. https://doi.org/10.1177/027836498600500106
  6. Reichardt, D., and J. Shick, "Collision avoidance in dynamic environments applied to autonomous vehicle guidance on the motorway," Intelligent Vehicles Symposium, Proceedings of the. IEEE, 1994.
  7. Hennessey, Michael P., Craig Shankwitz, and Max Donath., "Sensor-based virtual bumpers for collision avoidance: configuration issues," Photonics East International Society for Optics and Photonics, 1995.
  8. Gerdes, J. Christian, and Eric J. Rossetter., "A unified approach to driver assistance systems based on artificial potential fields," Journal of Dynamic Systems, Measurement, and Control, Vol. 123, No. 3, pp. 431-438, 2001. https://doi.org/10.1115/1.1386788
  9. Rossetter, Eric J., "A potential field framework for active vehicle lanekeeping assistance," Ph.D. dissertation, stanford university, 2003.
  10. K. Bilstrup, E. Uhlemann, E. G. Strom, U. Bilstrup, "Evaluation of the IEEE 802.11 p MAC method for vehicle-to-vehicle communication," IEEE 68th Vehicular Technology Conference, 2008.
  11. T. Tielert, M. Killat, H. Hartenstein, R. Luz, S. Hausberger, T. Benz, "The impact of traffic-lightto-vehicle communication on fuel consumption and emissions," IEEE Internet of Things (IOT), 2010.
  12. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J.Z. Kolter, D. Langer, O. Pink, V. Pratt; M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, S. Thrun, "Towards fully autonomous driving: Systems and algorithms," IEEE Intelligent Vehicles Symposium (IV), pp. 163-168, 2011.
  13. K. Kim, D. Kim, S. Yoon, "Urban Mobility Simulation," Journal of The Korea Computer Graphics Society, Vol. 17, No. 4, pp. 23-30, 2011. https://doi.org/10.15701/kcgs.2011.17.4.23