DOI QR코드

DOI QR Code

유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석

Preliminary design and performance analysis of a radial inflow turbine

  • Kim, Do-Yeop (Nuclear Power Equipment Research Center, Korea Maritime and Ocean University) ;
  • Kang, Ho-Keun (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Kim, You-Taek (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • 투고 : 2015.07.20
  • 심사 : 2015.09.01
  • 발행 : 2015.09.30

초록

유기랭킨사이클의 열역학적 효율에 큰 영향을 미치는 구성요소는 터빈이다. 일반적으로 유기랭킨사이클에서 팽창과정은 작동유체의 급격한 물성치 변화를 수반하므로 터빈의 설계에 많은 어려움이 따른다. 그러므로 효율이 우수한 터빈의 개발을 위해서는 정밀한 터빈의 예비설계가 요구된다. 반경류터빈의 효율은 loading과 flow 계수에 큰 영향을 받으므로 터빈의 예비설계에서 이러한 변수의 선정이 매우 중요하다. 그러나 기존의 성능곡선으로부터 loading과 flow 계수를 선정하는 고전적인 방법을 이용할 경우 정밀한 예비설계를 기대하기 힘들다. 그러므로 본 연구에서는 로터 깃의 개수와 열역학적 설계조건으로부터 loading과 flow 계수를 산출하는 방법을 제시하였다. 본 연구에서 제시한 예비설계모델을 이용하여 예비설계를 수행한 결과는 공신력 있는 상용예비설계프로그램을 이용한 결과와 비교하여 만족스러운 것을 확인하였다. 또한 예비설계모델의 정확성을 검증하기 위해 예비설계한 반경류터빈에 대한 수치해석을 수행하였으며 효율을 제외한 대부분의 변수들이 예비설계조건을 비교적 충족하는 것을 확인하였다.

The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

키워드

참고문헌

  1. A. Whitfield and N. C. Baines, Design of Radial Turbomachines, NY, USA: John Wiley and Sons Inc., 2006.
  2. R. H. Aungier, Turbine Aerodynamics, NY, USA: ASME Press, 2006.
  3. S. J. Han and J. B. Seo, "20kW turbine development for OTEC system," Journal of the Korea Society for Fluid Machinery, vol. 17, no. 6, pp. 38-43, 2014 (in Korean). https://doi.org/10.5293/kfma.2014.17.6.038
  4. E. Sauret and Y. Gu, "Three-dimensional off-design numerical analysis of an organic Rankine cycle radial- inflow turbine," Journal of the Applied Energy, vol. 135, pp. 202-211, 2014. https://doi.org/10.1016/j.apenergy.2014.08.076
  5. D. Y. Kim, A Study of the Development of a Preliminary Design Program for Organic Rankine Cycle Radial Inflow Turbines, Ph.D. Dissertation, Department of Marine System Engineering, Korea Maritime and Ocean University, Korea, 2015 (in Korean).
  6. H. Moustapha, M. F. Zelesky, N. C. Baines, and D. Japikse, Axial and Radial Turbines, Vermont, USA: Concepts NREC, 2003.
  7. D. Y. Kim, H. K. Kang, and Y. T. Kim, "The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC," Journal of the Korean Society of Marine Engineering, vol. 38, no. 3, pp. 276-284, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.3.276
  8. D. Y. Kim and Y. T. Kim, "Design of a 100kW-class radial turbine for ocean thermal energy conversion using R32," Journal of the Koran Society of Marine Engineering, vol. 38, no. 9, pp. 1101-1105, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.9.1101
  9. J. Harinck, D. Pasquale, R. Pecnik, J. van Buijtenen, and P. Colonna, "Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of the Power and Energy, vol. 227, no. 6, pp. 637-645, 2013.
  10. E. Sauret and A. S. Rowlands, "Candidate radial -inflow turbines and high-density working fluids for geothermal power systems," Journal of the Energy, vol. 36, no. 7, pp. 4460-4467, 2011. https://doi.org/10.1016/j.energy.2011.03.076
  11. ANSYS CFX 13.0 Modeling Guide.
  12. J. G. Bak, J. U. Kim, Y. S. Gang, L. S. Cho, and J. S. Cho, "Comparative study on the near-wall treatment methods for heat transfer prediction of gas turbines nozzle guide vane," Proceedings for the KSME Fall Conference, pp. 985-990, 2013. (in Korean)
  13. J. K. Choi and H. T. Kim, "A study of using wall function for numerical analysis of high Reynolds number turbulent flow," Journal of the society of Naval Architects of Korean, vol. 47, no. 5, pp. 647-655, 2010 (in Korean). https://doi.org/10.3744/SNAK.2010.47.5.647
  14. ANSYS CFX 13.0 Theory Guide.
  15. P. Colonna, S. Rebay, J. Harinck and A. Guardone, "Real-gas effects in ORC turbine flow simulations: influence of thermodynamic models on flow fields and performance parameters," Proceedings of the European Conference on Computational Fluid Dynamics, pp. 1-18, 2006.

피인용 문헌

  1. Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.484
  2. 115kW급 벌브형 수차의 설계와 성능분석 vol.42, pp.4, 2015, https://doi.org/10.5916/jkosme.2018.42.4.304