DOI QR코드

DOI QR Code

홀로그래픽 데이터 저장장치에서 부호율 1/2인 이진 변조부호의 최소거리에 따른 성능 분석

Performance of the Code Rate 1/2 Modulation Codes According to Minimum Distance on the Holographic Data Storage

  • 정성권 (숭실대학교 전자정보공학부) ;
  • 이재진 (숭실대학교 전자정보공학부)
  • Jeong, Seongkwon (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 투고 : 2015.09.04
  • 심사 : 2015.09.25
  • 발행 : 2015.10.25

초록

본 논문은 홀로그래픽 저장장치에서 부호율이 1/2이면서 최소거리가 다른 세 종류의 이진 변조부호를 제안하고, 이 때 최소거리의 변화에 따른 변조부호의 성능 차이에 대해서 알아본다. 밀도의 정도를 나타내는 블러와 읽기에서 픽셀의 어긋남에 따른 변조부호의 성능을 조사하였다. 최소거리의 증가는 변조기와 복조기의 복잡도를 증가시키는 단점이 있지만, 부호간의 최소거리를 증가시키면 변조부호가 스스로 오류정정 능력을 향상시키게 되면서 블러와 어긋남에 대해서도 좋은 성능을 보여준다.

In this paper, we introduce three modulation codes of the code rate 1/2 with different minimum distances, respectively, and investigate the performance of the codes according to the minimum distance. We simulate the codes in accordance with blur and misalignment. As the minimum distance increases, the complexity of encoder and decoder also grows. However, it can improve the error correcting capability and shows good performance with blur and misalignment.

키워드

참고문헌

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol.92, pp.1231-1280, August 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, no.393, pp. 393-400, January 2002.
  3. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel matched volume holographic data storage," Appl. Opt., Vol.38, No.20, pp. 4374-4386, July 1999. https://doi.org/10.1364/AO.38.004374
  4. B. Kim and J. Lee, "2-D Non-Isolated Pixel 6/8 Modulation Code," IEEE Trans. Magn., Vol. 50, no. 7, pp. 3501404, July 2014
  5. J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., vol. 49, no. 8, pp. 08KB04, August 2010.
  6. J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp. 03A031, March 2009.
  7. J. Kim and J. Lee, "Partial response maximum likelihood detections using two-dimensional equalizer for holographic data storage," Jpn. J. Appl. Phys., Vol.48, no.3, 03A033, 2009.
  8. D. Park and J. Lee, "Soft-Decoding Algorithm of 3/4 Tone-Controllable Code with Low-Density Parity Check Code for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 50, pp. 09ME11, September 2011.
  9. J. Kim and J. Lee, "Modified Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 49, no. 8, pp. 08KB03, August 2010.
  10. J. Kim and J. Lee, "Simplified Decoding of Trellis-Based Error-Correcting Modulation Codes Using the M-Algorithm for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 51, pp. 08JD02, August 2012 https://doi.org/10.7567/JJAP.51.08JD02
  11. J. Kim and J. Lee "Two-Dimensional SOVA and LDPC Codes for Holographic Data Storage System," IEEE Trans. Magn., Vol. 45, no. 5, pp. 2260-2263, May 2009. https://doi.org/10.1109/TMAG.2009.2016260
  12. D. Park, M. Yoo, and J. Lee, "Tone-Controllable Codes for Holographic Data Storage System," Jpn. J. Appl. Phys., Vol. 49, no. 8, , pp. 08KB05, August 2010.
  13. M. Keskinoz and B. V. K. V. Kumar, "Efficient modeling of volume holographic storage channels (VHSC)," Proc. SPIE, Vol.4090, pp. 205-210, May 2000.