References
- Beer, M., Zhang, Y., Quek, S.T. and Phoon, K.K. (2013), "Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context", Struct. Saf., 41, 1-10. https://doi.org/10.1016/j.strusafe.2012.10.003
- Cheng, G. and Plumtree, A. (1998), "A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion", Int. J. Fatig., 20(7), 495-501. https://doi.org/10.1016/S0142-1123(98)00018-8
- Costa, J.D., Ferreira, J.A.M., Borrego, L.P. and Abreu, L.P. (2012), "Fatigue behaviour of AA6082 friction stir welds under variable loadings", Int. J. Fatig., 37, 8-16. https://doi.org/10.1016/j.ijfatigue.2011.10.001
- Cunha, D.J., Benjamin, A.C., Silva, R.C., Guerreiro, J.N.C. and Drach, P.R.C. (2014), "Fatigue analysis of corroded pipelines subjected to pressure and temperature loadings", Int. J. Press. Ves. Pip., 113, 15-24. https://doi.org/10.1016/j.ijpvp.2013.10.013
- Dai, J., Das, D., Ohadi, M. and Pecht, M. (2013), "Reliability risk mitigation of free air cooling through prognostics and health management", Appl. Energy, 111, 104-112. https://doi.org/10.1016/j.apenergy.2013.04.047
- Diamond, O. (1988), "Fuzzy least squares", Inform. Sci., 46(3), 141-157. https://doi.org/10.1016/0020-0255(88)90047-3
- Doudard, C., Calloch, S. and Cugy, P. (2005), "A probabilistic two-scale model for high-cycle fatigue life predictions", Fatig. Fract. Eng. Mater. Struct., 28(3), 279-288. https://doi.org/10.1111/j.1460-2695.2005.00854.x
- Fatemi, A. and Yang, L. (1998), "Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials", Int. J. Fatig., 20(1), 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9
- Friedman, M., Ming, M. and Kandel, A. (1998), "Fuzzy linear systems", Fuzzy Set. Syst., 96(2), 201-209. https://doi.org/10.1016/S0165-0114(96)00270-9
- Kim, J., Yi, J., Kim, J., Zi, G. and Kong, J.S. (2013), "Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress", Int. J. Damage Mech., 22(3), 375-392. https://doi.org/10.1177/1056789512448803
- Kwofie, S. and Rahbar, N. (2013), "A fatigue driving stress approach to damage and life prediction under variable amplitude loading", Int. J. Damage Mech., 22(3), 393-404. https://doi.org/10.1177/1056789512449638
- Liu, Y. and Mahadevan, S. (2007), "Stochastic fatigue damage modeling under variable amplitude loading", Int. J. Fatig., 29(6), 1149-1161. https://doi.org/10.1016/j.ijfatigue.2006.09.009
- Lu, J. (1996),Handbook of Measurement Residual Stresses, Fiarmont Rress, United States.
- Luo, X., Luo, R. and Lytton, R.L. (2014), "Energy-based mechanistic approach for damage characterization of preflawed visco-elasto-plastic materials", Mech. Mater., 70, 18-32. https://doi.org/10.1016/j.mechmat.2013.11.008
- Manson, S.S. and Halford, G.R. (1981), "Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage", Int. J. Fract., 17(2), 169-192. https://doi.org/10.1007/BF00053519
- Meneghetti, G. (2007), "Analysis of the fatigue strength of a stainless steel based on the energy dissipation", Int. J. Fatig., 29(1), 81-94. https://doi.org/10.1016/j.ijfatigue.2006.02.043
- Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 68, 339-341.
- Moller, B. and Beer, M. (2004), Fuzzy Randomness-Uncertainty in Civil Engineering and Computational Mechanics, Springer, Berlin.
- Moller, B. and Beer, M. (2008), "Engineering computation under uncertainty-Capabilities of non-traditional models", Comput. Struct., 86(10), 1024-1041. https://doi.org/10.1016/j.compstruc.2007.05.041
- Peters, G. (1994), "Fuzzy linear-regression with fuzzy intervals", Fuzzy Set. Syst., 63(1), 45-55. https://doi.org/10.1016/0165-0114(94)90144-9
- Rathod, V., Yadav, O.P., Rathore, A. and Jain, R. (2011), "Probabilistic modeling of fatigue damage accumulation for reliability prediction", Int. J. Qual. Stat. Reliab., 2011, 1-10.
- Sankararaman, S. and Mahadevan, S. (2013), "Separating the contributions of variability and parameter uncertainty in probability distributions", Reliab. Eng. Syst. Saf, 112, 187-199. https://doi.org/10.1016/j.ress.2012.11.024
- Sankararaman, S., Ling, Y. and Mahadevan, S. (2011), "Uncertainty quantification and model validation of fatigue crack growth prediction", Eng. Fract. Mech, 78(7), 1487-1504. https://doi.org/10.1016/j.engfracmech.2011.02.017
- Skorupa, M. (1999), "Load interaction effects during fatigue crack growth under variable amplitude loading-a literature review. Part II: qualitative interpretation", Fatig. Fract. Eng. Mater. Struct., 22(10), 905-926. https://doi.org/10.1046/j.1460-2695.1999.00158.x
- Tanaka, H. (1987), "Fuzzy data analysis by possibilistic linear models", Fuzzy Set. Syst., 24, 363-375. https://doi.org/10.1016/0165-0114(87)90033-9
- Walley, P. (1991), Statistical Reasoning with Imprecise Probabilities, Chapman & Hall, London.
- Wu, W.F. and Huang, T.H. (1993), "Prediction of fatigue damage and fatigue life under random loading", Int. J. Press. Ves. Pip., 53(2), 273-298. https://doi.org/10.1016/0308-0161(93)90083-6
- Xiong, J.J. and Shenoi, R.A. (2011), Fatigue and Fracture Reliability Engineering, Springer Series in Reliability Engineering, Springer, Berlin.
- Zadeh, L.A. (1975), "The concept of a linguistic variable and its application to approximate reasoning", Inform. Sci., 8, 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
- Zhang, J. and Wang, F. (2010), "Modeling of damage evolution and failure in fiber-reinforced ductile composites under thermomechanical fatigue loading", Int. J. Damage Mech., 19(7), 851-875. https://doi.org/10.1177/1056789509359650
- Zhang, Y. (2015a), "Comparing the robustness of offshore structures with marine deteriorations-a fuzzy approach", Adv. Struct. Eng., 18(8), 1159-1172. https://doi.org/10.1260/1369-4332.18.8.1159
- Zhang, Y. (2015b), "On the climatic uncertainty to the environment extremes: a Singapore case and statistical approach", Polish J. Environ. Stud., 24(3), 1413-1422. https://doi.org/10.15244/pjoes/31718
- Zhang, Y. and Cao, Y.Y. (2015), "A fuzzy quantification approach of uncertainties in an extreme wave height modeling", Acta Oceanologica Sinica, 34(3), 90-98. https://doi.org/10.1007/s13131-015-0636-5
- Zhang, Y., Beer, M. and Quek, S.T. (2015), "Long-term performance assessment and design of offshore structures", Comput. Struct., 154, 101-115. https://doi.org/10.1016/j.compstruc.2015.02.029
- Zhu, S.P, Huang, H.Z. and Wang, Z.L. (2011), "Fatigue life estimation considering damaging and strengthening of low amplitude loads under different load sequences using fuzzy sets approach", Int. J. Damage Mech, 20, 876-899. https://doi.org/10.1177/1056789510397077
- Zhu, S.P., Huang, H.Z., He, L.P., Liu, Y. and Wang, Z. (2012), "A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys", Eng. Fract. Mech., 90, 89-100. https://doi.org/10.1016/j.engfracmech.2012.04.021
- Zhu, S.P, Huang, H.Z., Li, Y., Liu, Y. and Yang, Y. (2013a), "Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels", Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Tran., 229(1), 23-33. https://doi.org/10.1177/0954409713496772
- Zhu, S.P., Huang, H.Z., Liu, Y., Yuan, R. and He, L.P. (2013b), "An efficient life prediction methodology for low cycle fatigue-creep based on ductility exhaustion theory", Int. J. Damage Mech., 22(4),556-571. https://doi.org/10.1177/1056789512456030
- Zuo, F.J., Wang, H.K., Zhu, S.P., Gao, H. and Huang, H.Z. (2014), "Stochastic fatigue life prediction based on residual strength", Proceedings of 2014 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2014), Dalian, China, July.
Cited by
- Influence of Climate Change in Reliability Analysis of High Rise Building vol.2016, 2016, https://doi.org/10.1155/2016/5709245
- A probabilistic analysis of Miner's law for different loading conditions vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.071
- Strength changes of 40 Cr steel subjected to cyclic torsion below the fatigue limit vol.60, pp.11, 2018, https://doi.org/10.3139/120.111249
- Fuzzy inference systems based prediction of engineering properties of two-stage concrete vol.19, pp.2, 2015, https://doi.org/10.12989/cac.2017.19.2.133
- A novel evidence theory model and combination rule for reliability estimation of structures vol.62, pp.4, 2015, https://doi.org/10.12989/sem.2017.62.4.507
- LMI based criterion for reinforced concrete frame structures vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.407
- Advanced controller design for AUV based on adaptive dynamic programming vol.5, pp.3, 2015, https://doi.org/10.12989/acd.2020.5.3.233
- Modified algorithmic LMI design with applications in aerospace vehicles vol.8, pp.1, 2015, https://doi.org/10.12989/aas.2021.8.1.069
- Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
- Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2015, https://doi.org/10.12989/sem.2021.79.2.131