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ON THE DYNAMICS OF PREDATOR-PREY MODELS
WITH IVLEV’S FUNCTIONAL RESPONSE

Kimun Ryu*

Abstract. In this paper, we study the existence and the stabil-
ity of equilibria of predator-prey models with Ivlev’s functional re-
sponse. We give a simple proof for the uniqueness of limit cycles
of the predator-prey system. The existence and the stability at
the origin and a boundary equilibrium point(including the positive
equilibrium point) are also investigated.

1. Introduction

In this paper, we consider the predator-prey system with Ivlev’s func-
tional response:

(1.1)





dx
dt = rx(1− x)− (1− e−ax)y,
dy
dt = y((1− e−ax)−D),
x(0) > 0, y(0) > 0

where r, a and D are positive constants that stand for the prey’s intrinsic
growth rate, the efficiency of the predator for capturing prey and the
predator death rate, respectively. Here x(t) and y(t) are the population
densities of prey and predator at time t, respectively.

Predator-prey systems with Ivlev’s functional response have been
studied on the existence and the uniqueness of limit cycles(one can refer
[1, 2, 4, 5] and the references therein). In [4], J. Sugie gave a neces-
sary and sufficient condition for the uniqueness of limit cycles for system
(1.1). To prove the result, after transforming system (1.1) into a Liénard
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system when D < 1 − e−a, the author applied the Poincaré-Bendixson
theorem and the result by R. E. Kooij and A. Zegeling [2].

The purpose of this paper is to study the existence and the stability
of the three equilibria (0, 0), (1, 0) and (x∗, y∗) of system (1.1), where
(x∗, y∗) is a positive equilibrium. We point out that the sufficient and
the necessary condition for the uniqueness of limit cycles for system (1.1)
was very well studied by J. Sugie, but we simply prove the result again
in a local sense.

This article is organized as follow. In Section 2, we investigate the
existence and the stability of the equilibria (0, 0), (1, 0) and (x∗, y∗) of
system (1.1). In Section 3, we show the local existence and uniqueness
of limit cycles by using the Hopf bifurcation theorem in [3]. In addition,
we provide a numerical simulation. The summarization of the dynamics
to system (1.1) and the derivation of the Liapunov number are presented
in the appendix.

2. Asymptotic behavior of system (1.1)

In this section, we study the existence and the stability of equilibria
of system (1.1). System (1.1) always has equilibria, the origin (0, 0) and
the boundary equilibrium point (1, 0). Moreover, system (1.1) has the
unique positive critical point (x∗, y∗), where

x∗ = −1
a

ln(1−D), y∗ =
r

D
x∗(1− x∗)

in the case D < 1− e−a.
Consider the Jacobian matrix J(x, y) of system (1.1) which is given

by

(2.1) J(x, y) =
(

r − 2rx− ae−axy −1 + e−ax

ae−axy 1−D − e−ax

)
.

Hereafter, denote the determinant and the trace of J(x, y) by ∆ and τ ,
respectively.

Theorem 2.1.

(i) (0, 0) is a saddle.
(ii) If 1−D − e−a > 0, then (1, 0) is an saddle.
(iii) If 1−D − e−a < 0, then (1, 0) is a stable critical point.

Moreover, it is a stable node when 1−D − e−a 6= −r.
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Proof. (i) From (2.1), J(0, 0) =
(

r 0
0 −D

)
, and so (0, 0) is a saddle

point since ∆ = −rD < 0.

(ii) Observe that J(1, 0) =
( −r −1 + e−a

0 1−D − e−a

)
, ∆ = −r(1−D −

e−a) and τ = −r + 1−D − e−a. Since 1−D − e−a > 0, ∆ < 0, and so
the result follows.

(iii) In this case, we have ∆ > 0 and τ < 0. Therefore, (1, 0) is a
stable critical point. Furthermore, if 1−D− e−a 6= −r, then τ2− 4∆ =
(r + 1−D− e−a)2 > 0, and thus we see that (1, 0) is a stable node.

To investigate the stability of the positive equilibrium (x∗, y∗), we
assume D < 1− e−a. Then since 1−D − e−ax∗ = 0, (2.1) yields to

J(x∗, y∗) =
(

r − 2rx∗ − a(1−D)y∗ −D
a(1−D)y∗ 0

)
.

Here ∆ = aD(1 − D)y∗ > 0 and τ = r − 2rx∗ − a(1 − D)y∗. Observe
that

τ = (>,<)0 if and only if a = (>,<)−2D + (1−D) ln(1−D)
D + (1−D) ln(1−D)

ln(1−D).

Therefore, it is clear that (x∗, y∗) is locally asymptotically stable(unstable)
if τ ≤ 0(τ > 0, respectively) since ∆ > 0. Moreover, if τ2−4∆ > 0, then
(x∗, y∗) is a stable node; if τ2 − 4∆ < 0, then (x∗, y∗) is a stable spiral.
But (x∗, y∗) may be a stable spiral, a stable node, or a degenerate stable
node when τ2 − 4∆ = 0. Consequently, we have the following theorem.

Theorem 2.2.
(i) If a > −2D+(1−D) ln(1−D)

D+(1−D) ln(1−D) ln(1−D), then (x∗, y∗) is unstable.

(ii) If a ≤ −2D+(1−D) ln(1−D)
D+(1−D) ln(1−D) ln(1−D), then (x∗, y∗) is locally asymp-

totically stable. Moreover, (x∗, y∗) is a stable node if τ2 − 4∆ > 0
and is a stable spiral if τ2 − 4∆ < 0.

3. Uniqueness of limit cycles

In this section, we show the local existence and uniqueness of limit
cycles of system (1.1) by using the Hopf bifurcation theorem in [3]. In
addition, we provide a numerical simulation.

Consider the planar analytic system:

(3.1)
{

dx
dt = ex + fy + p(x, y),
dy
dt = gx + hy + q(x, y),
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where ∆ := eh − fg > 0, µ := e + h = 0 and the analytic functions
p(x, y), g(x, y) are given by the series

p(x, y) =
∑

i+j≥2

aijx
iyj and q(x, y) =

∑

i+j≥2

bijx
iyj .

Then the Liapunov number σ is given by the formula:

σ =
−3π

2f∆3/2
{[eg(a2

11 + a11b02 + a02b11) + ef(b2
11 + a20b11 + a11b02)

+g2(a11a02 + 2a02b02)− 2eg(b2
02 − a20a02)− 2ef(a2

20 − b20b02)
−f2(2a20b20 + b11b20) + (fg − 2e2)(b11b02 − a11a20)]
−(e2 + fg)[3(gb03 − fa30) + 2e(a21 + b12) + (ga12 − fb21)]}.

The following theorem can be found in [3].

Theorem 3.1. (The Hopf Bifurcation) If σ 6= 0, then a Hopf bifur-
cation occurs at the origin of the planar analytic system (3.1) at the
bifurcation value µ = 0; in particular, if σ < 0, then (3.1) has a unique
stable limit cycle for µ > 0 and no limit cycle for µ ≤ 0.

Now, we consider system (1.1) at the positive equilibrium (x∗, y∗).
Translating the interior equilibrium (x∗, y∗) of system (1.1) to the origin,
(1.1) can be written as

{
dx
dt = r(x + x∗)− r(x + x∗)2 − (1− e−a(x+x∗))(y + y∗),
dy
dt = (y + y∗)((1− e−a(x+x∗))−D).

Since e−ax =
∑∞

n=0
(−ax)n

n! , we can have the following planar analytic
system:

(3.2)
{

dx
dt = (r − 2rx∗ − a(1−D)y∗)x−Dy + p(x, y),
dy
dt = a(1−D)y∗x + q(x, y),

where the analytic functions p(x, y) and q(x, y) are given by

p(x, y) = (−r+
a2

2
(1−D)y∗)x2−a(1−D)xy−a3

6
(1−D)y∗x3+

a2

2
(1−D)x2y+· · · ,

q(x, y) = −a2

2
(1−D)y∗x2+a(1−D)xy+

a3

6
(1−D)y∗x3−a2

2
(1−D)x2y+· · · .

In the above derivation, note that rx∗ − r(x∗)2 − (1 − e−ax∗)y∗ = 0,
y∗(1−D− e−ax∗) = 0 since (x∗, y∗) is the interior equilibrium of system
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(1.1) and e−a(x+x∗) = e−ax∗(1 − ax + a2

2 x2 − a3

6 x3 + · · · ). From the
equation (3.2), we have

J(0, 0) =
(

r − 2rx∗ − a(1−D)y∗ −D
a(1−D)y∗ 0

)
.

Observe that ∆ = aD(1−D)y∗ > 0 and µ = r−2rx∗−a(1−D)y∗. If we
assume µ = 0, then the Liapunov number σ is given by the formula(the
detail derivation is given in the appendix):

(3.3) σ =
3π

2D∆3/2
a2D(1−D)y∗(r − 2rD − a2

2
y∗(1−D)2).

Lemma 3.2. If µ = 0, then σ < 0.

Proof. Since µ = r − 2rx∗ − a(1−D)y∗ = 0 and x∗ = − 1
a ln(1−D),

we have

σ =
3π

2D∆3/2
a2D(1−D)y∗(r − 2rD − a

2
r(1−D)(1− 2x∗))

=
3π

2D∆3/2
a2rD(1−D)y∗(1− 2D − a

2
(1−D)− (1−D) ln(1−D)).

Using the fact that a = −2D+(1−D) ln(1−D)
D+(1−D) ln(1−D) ln(1−D) > 2 for 0 < D < 1

from [4],

σ <
3π

2D∆3/2
a2rD(1−D)y∗(−D − (1−D) ln(1−D)).

Let F (D) := −D − (1 − D) ln(1 − D), then we see that F (D) < 0 for
0 < D < 1 since F (0) = 0 and F ′(D) = ln(1 − D) < 0, and therefore
σ < 0.

Finally, using Theorem 3.1(The Hopf Bifurcation Theorem), we have
the following theorem.

Theorem 3.3. If

a > −2D + (1−D) ln(1−D)
D + (1−D) ln(1−D)

ln(1−D),

then system (1.1) has a unique stable limit cycle; otherwise, system (1.1)
has no limit cycle.

Example 3.4. (Numerical simulation) We consider the following sys-
tem

(3.4)





dx
dt = 0.4x(1− x)− (1− e−3x)y,
dy
dt = y((1− e−3x)− 0.5),
x(0) = 1, y(0) = 0.5.
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Comparing to system (3.3), r = 0.3, a = 3 and D = 0.5. It is easy to
see that 1−D − e−a ∼= 0.04 > 0 and

a > −2D + (1−D) ln(1−D)
D + (1−D) ln(1−D)

ln(1−D) ∼= 2.95.

Theorem 3.3 yields that system (1.1) has a unique stable limit cycle.
Figure 1 shows the dynamic behaviors of the solution (x(t), y(t)) which
is a positive periodic solution of (3.4).

Figure 1. Evolution of the positive periodic solutions
of system (3.1)

Appendix

In this section, we summarize the results(Theorem 2.1, 2.2 and 3.3)
for system (1.1) in Table 1 and derive the equation (3.3) in detail.
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I. Summarization of the dynamics for (1.1).

Conditions (0, 0) (1, 0) (x∗, y∗)
1−D − e−a < 0, Saddle Stable node Don’t exist
1−D − e−a 6= −r (Global Attractor)
1−D − e−a < 0, Saddle Stable Don’t exist
1−D − e−a = −r (Global Attractor)
1−D − e−a > 0, Saddle Saddle Stable node

τ ≤ 0, τ2 − 4∆ > 0 (Global Attractor)
1−D − e−a > 0, Saddle Saddle Stable spiral

τ ≤ 0, τ2 − 4∆ < 0 (Global Attractor)
1−D − e−a > 0, Saddle Saddle Stable

τ ≤ 0, τ2 − 4∆ = 0 (Global Attractor)
1−D − e−a > 0, Saddle Saddle Unique limit cycle

τ > 0

Table 1. The dynamics of (1.1).

II. Derivation of (3.3).

σ =
3π

2D∆3/2
{−D2[2(−r +

a2

2
(1−D)y∗) · (−a2

2
(1−D)y∗)

+a(1−D) · (−a2

2
(1−D)y∗)]

−aD(1−D)y∗ · a(1−D) · (−r +
a2

2
(1−D)y∗)

+aD(1−D)y∗ · [3D · (−a3

6
(1−D)y∗) + D · (−a2

2
(1−D))]}

=
3π

2D∆3/2
{a2D2(1−D)y∗(−r +

a2

2
(1−D)y∗) +

a3

2
D2(1−D)2y∗

−a2D(1−D)2y∗(−r +
a2

2
(1−D)y∗)

−a4

2
D2(1−D)2(y∗)2 − a3

2
D2(1−D)2y∗}

=
3π

2D∆3/2
a2D(1−D)y∗{−rD +

a2

2
D(1−D)y∗

+r − a2

2
(1−D)y∗ − rD +

a2

2
D(1−D)y∗ − a2

2
D(1−D)y∗}

=
3π

2D∆3/2
a2D(1−D)y∗(r − 2rD +

a2

2
D(1−D)y∗ − a2

2
(1−D)y∗)

=
3π

2D∆3/2
a2D(1−D)y∗(r − 2rD − a2

2
y∗(1−D)2).



472 Kimun Ryu

References

[1] V. S. Ivlev, Experimental ecology of the feeding of fishes, Yale University Press,
1961.

[2] R. E. Kooij and A. Zegeling, A predator-prey model with Ivlev’s functional
response, J. Math. Anal. Appl. 198 (1996), no. 2, 473-489.

[3] L. Perko, Differential equations and dynamical systems, Texts in Applied Math-
ematics 7, Springer-Verlag, New York, 1991.

[4] J. Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J.
Math. Anal. Appl. 217 (1998), no. 2, 349-371.

[5] M. L. Rosenzweig, Paradox of enrichment: destabilization of exploitation
ecosystems in ecological time, Science 171 (1991), 385-387.

[6] D. G. Zill and M. R. Cullen, Differential equations with boundary-value prob-
lem, 3rd edition, PWS Publishing Company, Boston, 1992.

*
Department of Mathematics Education
Cheongju University
Cheongju, Chungbuk 28503, Republic of Korea
E-mail : ryukm@cju.ac.kr




