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POINTS ON MODULAR CURVES OVER FINITE
FIELDS

Daeyeol Jeon*

Abstract. In this paper we propose a method of computing the
number of points on the reduction of non-hyperelliptic modular
curves of genus greater than or equal to 3 over finite fields.

1. Introduction

Let N be a positive integer, and let

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
.

Let X0(N) denote the modular curve corresponding to Γ0(N) and g0(N)
denote its genus. The modular curve X0(N)(with cusps removed) para
metrizes isomorphism classes of pairs (E, C), where E is an elliptic curve
and C is a cyclic subgroup of E of order N .

A curve X defined over an algebraically closed field k is called d-gonal
if it admits a map φ : X → P1 over k of degree d. The smallest possible
d is called the gonality of X denoted by Gon(X). If a curve X is 2-gonal
and its genus g(X) ≥ 2, then X is said to be hyperelliptic. If a curve X
is 3-gonal, then we call X trigonal.

Ogg [4] determined all values of N for which X0(N) is hyperelliptic,
and Hasegawa and Shimura [2] determined all the trigonal curves X0(N).
A crucial instrument used in their proofs is #X̃0(N)(Fp2) which denote
the number of points on the reduction of X0(N) over the finite fields
Fp2 where p is a prime with p - N . Note that for a prime p - N , the
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curve X0(N) has good reduction. Indeed Ogg [4] proposed a method to
give a lower bound for #X̃0(N)(Fp2) by computing the pairs (E,C) with
supersingular elliptic curves E and their cyclic subgroups C of order N .

In this paper, we propose a method of computing the exact number
of points on the reduction of non-hyperelliptic modular curves X0(N) of
g0(N) ≥ 3 over any finite fields whose characteristic does not divide N .
This method can be applied for another sort of modular curves defined
over Q.

Indeed, such a method is well-known for rational, elliptic or hyperel-
liptic modular curves.

2. Preliminaries

Suppose X0(N) is a non-hyperelliptic modular curve of g := g0(N) ≥
3. In this section, we consider a method to find the canonical embedding
of X0(N) which is described in [2, 3]. The canonical embedding of X0(N)
is the embedding

X0(N) 3 P 7→ [ω1(P ) : · · · : ωg(P )] ∈ Pg−1

determined by the canonical linear system. Its image is called a canonical
curve.

The space Ω1(X0(N)) of holomorphic differentials is isomorphic to the
space of weight 2 cusp forms, S2(N), on X0(N). Indeed, let {f1, . . . , fg}
be a basis for S2(N), then the set {fi(τ)dτ} forms a basis for Ω1(X0(N)).
Then the canonical embedding of X0(N) is given by

X0(N) 3 P 7→ [f1(P ) : · · · : fg(P )] ∈ Pg−1.

This image is a curve of degree 2g − 2 and it will be described by some
set of projective equations of the form F (f1, . . . , fg) = 0. We call these
equations a canonical model of X0(N).

To construct a canonical model we take the q-expansions of a basis
for the space S2(N) which can be computed by using a computer algebra
system SAGE. Here q = e2πiτ and τ is in the complex upper half plane.
Then we compute a canonical model by finding combinations of powers
of the q-expansions which yield identically zero series. We know that for
almost all N canonical models consist of polynomials of degree 2 from
the following result.

Theorem 2.1. [1, 5] Let X be a canonical curve of genus ≥ 4 defined
over an algebraically closed field. Then the ideal I(X) of X is generated
by some quadratic polynomials, unless X is trigonal or isomorphic to
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a smooth plane quintic curve, in which cases it is generated by some
quadratic and (at least one) cubic polynomials.

For the reader’s convenience, we make lists of N for which X0(N) is
rational, elliptic, hyperelliptic or of that Gon(X0(N)) = 3.

Theorem 2.2. [2, 4] The following holds:

(a) X0(N) is rational only for N : 1− 10, 12, 13, 16, 18, 25.
(b) X0(N) is elliptic only for N : 11, 14, 15, 17, 19, 20, 21, 24, 27, 32,

36, 49.
(c) X0(N) is hyperelliptic only for N : 22, 23, 26, 28, 29, 30, 31, 33,

35, 37, 39, 40, 41, 46, 47, 48, 50, 59, 71.
(d) Gon(X0(N)) = 3 only for N : 34, 38, 43, 44, 45, 53, 54, 61, 64, 81.

3. Canonical models

In this section, we explain how to compute a canonical model of
X0(N). Consider X0(42) of genus 5. In SAGE one can compute q-
expansions of a basis for S2(42) by using the following commands:

M = ModularForms(Gamma0(42));

S = M.cuspidal submodule();

S.q expansion basis(100);

Then we have the following:

f1 =q + q6 + q7 − 2q8 − 3q9 − 2q10 − q12 − · · · ,

f2 =q2 − q8 − q9 − 2q10 − 2q11 + 2q13 − · · · ,

f3 =q3 − q6 − 2q9 + q12 + 2q18 + q21 − · · · ,

f4 =q4 − q6 − q9 − 2q11 + q12 + 2q13 + · · · ,

f5 =q5 + q6 + q7 − 2q8 − 2q9 − q10 − · · · .

By Theorem 2.1, the defining ideal of the canonical curve in P4 of X0(42)
generated by quadratic polynomials, and hence it suffices to consider the
relations of g(g+1)

2 = 15 monomials {fifj} with 1 ≤ i ≤ j ≤ 5 for getting
a canonical model of X0(42).

Put A = (amn) the 99× 15 matrix with amn being the coefficient of
qm in the q-expansion of the n-th element fkfl of {fifj}.
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N Canonical model of X0(N)
34 x4 + x3z − 2x2z2 + 3xy2z + xz3 − y4 + z4

38 −y2 + zx− z2 − wy − wz − w2,
y2x− 3y3 − zx2 + 4zyx− 3zy2 + z2x− z2y − z3

−wx2 + wyx− 4wy2 − wzx + w3

42 −y2 + zx + vz,
−zy − z2 + vx + vy + vz − v2 + wz − 2wv,

z2 − wx + wy − wv + w2

43 x4 + 2x3y + 2x2y2 + 2x2yz + 4x2z2

+xy3 + 2xy2z + 4xyz2 + y3z + 2y2z2 + 3yz3 + 4z4

44 −x2 − 4yx− 8y2 − 4zx− 16zy − 16z2 + w2,
−y3 + zx2 + 4zyx + 4z2x

45 x4 + 2x3y + x2y2 + x2yz − x2z2 − xy2z + 3xyz2

−2xz3 − y3z + y2z2 + yz3 + 4z4

Table 1. Canonical models for X0(N)

Solving the linear equation AX = 0 with X =




x1
...

x15


, we can

find three relations between {fifj}, and they give a canonical model of
X0(42) as follows:

F1 : − y2 + zx + vz,

F2 : − zy − z2 + vx + vy + vz − v2 + wz − 2wv,(3.1)

F3 : z2 − wx + wy − wv + w2,

where the variables x, y, z, v, w are corresponding to f1, f2, f3, f4, f5, re-
spectively.

We omit an explanation for the canonical curves whose defining ideals
contain a cubic polynomial for which one can refer [2, 3].

We list canonical models for X0(N) in Table 1 where X0(N) is a
non-hyperelliptic curve of genus greater than or equal to 3 for N ≤ 50.
We note that the canonical models for X0(N) with N = 34, 43, 45 are
directly from Table 1 in [3]. Indeed, such curves are of genus 3 and
defined by plane quartic polynomials.
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4. Points on modular curves over a finite field

Suppose X0(N) is a non-hyperelliptic modular curve of genus g ≥ 3.
Now we explain how to compute #X̃0(N)(Fq) where q = pk and p - N .
Suppose {F1, F2, . . . , Fn} is a canonical model of X0(N) with integer
coefficients. Put Gi := Fi mod p for i = 1, 2, . . . , n. Let Y be the curve
defined by {G1, G2, . . . , Gn} over Fp. Our basic strategy is to compute
the number of Fq-rational points #Y (Fq) on Y . However we don’t know
whether it defines a non-singular curve. In fact, Galbraith [3] appointed
that the canonical model of X0(38) he obtained first has bad reduction
at the prime 3 even though 38 is not divisible by 3. By a proper change
of coordinates, he could obtain a canonical model for X0(38) which has
good reduction at 3. We note that the canonical model for X0(44) in
Table 1 is not computed by the basis of S2(44) obtained from Singular
but the basis {f(τ), f(2τ), f(4τ), g(τ)} where f(z)(resp. g(τ)) is the
normalized eigenform of Hecke operators in S2(11)(resp. S2(44)). The
canonical model for X0(44) obtained by using the basis of S2(44) from
Singular has bad reduction at 3.

A computer algebra system Macaulay2 enables us to determine whe
ther the reduction of a canonical model of X0(N) has good reduction
over Fq.

First, we compute the arithmetic genus of Y which should be equal
to the (geometric) genus of X0(N). It can be computed by the following
comments:

R=ZZ/p[x 1,x 2,...,x g]
I=ideal{G 1,j,G 2,...,G n}
genus(I)

Second, we check Y has no singularities over Fq by the following
comments:

R=GF(q)[x 1,x 2,...,x g]
I=ideal{G 1,j,G 2,...,G n}
sing=singularLocus(R/I)
codim(sing)

If it gives the co-dimension g of singular locus, then we can conclude
that Y has no singularity over Fq. However, we are not sure that Y has
no singularities over the algebraic closure F̄p. Nevertheless it suffices to
compute #Y (Fq) for obtaining #X̃0(N)(Fq).
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N p #X̃0(N)(Fp) #X̃0(N)(Fp2)
34 3 6 24
38 3 8 24
42 5 12 64
43 2 5 9
44 3 6 30
45 2 4 14

Table 2. Number of points #X̃0(N)(Fq)

Theorem 4.1. Suppose X0(N) is a non-hyperelliptic curve of genus
g ≥ 3, and its canonical model {F1, F2, . . . , Fn} consists of polynomials
with integer coefficients. Let Y be a curve defined by {G1, G2, . . . , Gn}
over Fp where Gi := Fi mod p with p - N . Suppose Y has geometric

genus g and no singularities over Fq with q = pk, then #Y (Fq) is the

same as #X̃0(N)(Fq).

Proof. If Y is a non-singular curve, then the result is true. Suppose
Y has singular points P1, . . . , Pm over a finite extension Fr of Fq. For
getting a smooth model for Y we need to blow Y up. Since the set
{P1, . . . , Pm} is Galois invariant, the blown up curve Z will be defined
over Fq. And the blow-down map π : Z → Y is defined over Fq too.
It follows that the fields of definition of points in π−1(Pi) must contain
the field of definition of Pi, hence are not equal to Fq. This proves that
π is a bijection on the Fq-rational points, i.e. π : Z(Fq) → Y (Fq) is
an isomorphism. By definition, #X̃0(N)(Fq) is #Z(Fq), so the result is
true.

Example 4.2. Let Y denote the curve over F5 defined by the reduc-
tion {G1, G2, G3} modulo 5 of a canonical model of X0(42) described
in (3.1). Using Macaulay2 we can check that Y has arithmetic genus
5 and no singularities over F25. Plugging in all values of x, y, z, v, w
and counting those for which G1 ≡ G2 ≡ G3 ≡ 0 (mod 5), we can get

#X̃0(42)(F5) = 12 and #X̃0(42)(F25) = 64.

By using the method suggested in this paper, we compute #X̃0(N)(Fp)
and #X̃0(N)(Fp2) in Table 2 where X0(N) is a non-hyperelliptic curve
of g0(N) ≥ 3 for N ≤ 50 and p is the smallest prime p - N .
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