THETA TOPOLOGY AND ITS APPLICATION TO THE FAMILY OF ALL TOPOLOGIES ON X

Jae-Ryong Kim*

ABSTRACT. Topology may described a pattern of existence of elements of a given set X. The family $\tau(X)$ of all topologies given on a set X form a complete lattice. We will give some topologies on this lattice $\tau(X)$ using a topology on X and regard $\tau(X)$ a topological space.

Our purpose of this study is to give new topologies on the family $\tau(X)$ of all topologies induced by old one and its θ topology and to compare them.

1. Introduction

Let X be a set. The family $\tau(X)$ would consist of all topologies on a given fixed set X. Here we want to give topologies on the family $\tau(X)$ of all the topologies using the given a topology τ on X and compare the topologies from new one.

The family $\tau(X)$ of all topologies on X form a complete lattice, that is, given any correction of topologies on X, there is a smallest (respectively largest) topology on X containing(contained in) each member of the correction. Of course, the partial order \leq on $\tau(X)$ is defined by inclusion \subseteq naturally.

The smallest topology in this lattice $\tau(X)$ is $\{\emptyset, X\}$ and the largest one is $\mathcal{P}(X)$. These topologies will sometimes be denoted by 0 and 1 respectively.

In the sequel, the closure and interior of A are denoted by A and int(A) in a topological space (X,τ) . The θ -closure of a subset G of a topological space (X,τ) is defined [12] to be the set of all point $x \in X$ such that every closed neighborhood of x intersect G non-emptily and is denoted by $\bar{G}_{\theta}(cf. [1],[6])$. Of course for any subset G in $X, G \subset \bar{G} \subset \bar{G}_{\theta}$

Received April 29, 2015; Accepted July 22, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A10, 54C05, 54D05, 54D10. Key words and phrases: comparison of topologies, θ topology, semi-regular space. Supported (in part) by Kookmin University Research Fund.

and \bar{G}_{θ} is closed in X. The subset G is called θ -closed if $\bar{G}_{\theta} = G$. If G is open, the $\bar{G} = \bar{G}_{\theta}$.

Similarly, the θ -interior of a subset G of a topological space (X, τ) is defined to be the set of all point $x \in X$ for which there exists a closed neighborhood of x contained in G. The θ -interior of G is denoted by $int_{\theta}G$. Naturally, for any subset G in X, $int_{\theta}(G) \subset G$. An open set U in (X, τ) is called θ -open if $U = int_{\theta}(U)$. By the definition of θ -open, the correction of all θ -open in a topological space (X, τ) form a topology τ_{θ} on X which will called the θ topology induced by τ which is related to the semi-regular topology on (X, τ) .

The semi-regular topology τ_s is the topology having as its base the set of all regular open sets. A subset A of a topological space X is called regular open [11] if $A = int\bar{A}$. For any subset A of X, $int(\bar{A})$ is always regular open. The correction of all regular open subsets of a topological space (X, τ) form a base for a topology τ_s on X coarser than τ , (X, τ_s) is called the semiregularization of (X, τ) .

THEOREM 1.1. [6] Let X be a topological space. If $V \subset X$ is θ -open and $x \in V$ then there exists a regular-open set U such that $x \in U \subset \bar{U} \subset V$.

Theorem 1.1 implies that in any topological space, $\tau_{\theta} \leq \tau_{s} \leq \tau$. The converse need not true [6]. The following theorems are stated in [6].

THEOREM 1.2. A topological space (X, τ) is regular if and only if $\tau_{\theta} = \tau$.

THEOREM 1.3. Let $A \subset X$ be θ -closed and $x \notin A$. Then there exists a regular-open set which separate x and A.

THEOREM 1.4. Let $f: X \to Y$ be continous. If $V \subset Y$ is θ -open, then $f^{-1}(V)$ is θ -open.

THEOREM 1.5. Let $f: X \to Y$ be a function from X onto Y that is both open and closed. Then f preserves θ -open sets.

We should recall the definitions of almost-continuity and θ -continuity: A function $f: X \to Y$ is $almost-continuous(\theta$ -continuous) if for each $x \in X$ and each regular-open V(open V) containing f(x), there exists a open set U containing x such that $f(U) \subset V$ ($f(\bar{U}) \subset \bar{V}$). It readily follows that continuity \Rightarrow almost-continuity $\Rightarrow \theta$ -continuity.

2. Compare of θ topologies defined different topologies

To notice the closure and interior of a subset A in the specific topological space (X, τ) , they will be denoted by \bar{A}^{τ} and $int^{\tau}(A)$ instead of \bar{A} and int(A) respectively. Hence an θ -interior of G in (X, τ) is denoted by $int^{\tau}_{\theta}(G)$ and an θ -open set U in (X, τ) will be denoted by $U = int^{\tau}_{\theta}(U)$.

LEMMA 2.1. Let ζ , η be topologies on X. If $\zeta \leq \eta$, then $\bar{A}^{\eta} \subset \bar{A}^{\zeta}$ and $int^{\zeta}(A) \subset int^{\eta}(A)$. Hence if A is open and closed in (X, ζ) , then A is also open and closed in (X, η) respectively.

Proof. We will prove only the closed case. The other case follows directly from the definition. Let $x \in \bar{A}^{\eta}$. Then for any open neighborhood G of x in (X, η) , $G \cap A \neq \emptyset$. This implies that for any open neighborhood G of x in (X, ζ) , $G \cap A \neq \emptyset$. Hence $\bar{A}^{\eta} \subset \bar{A}^{\zeta}$. Consequently if A is closed in (X, ζ) then $A \subset \bar{A}^{\eta} \subset \bar{A}^{\zeta} = A$. Therefore A is closed in (X, η) .

THEOREM 2.2. Let ζ , η be topologies on X and $\zeta \leq \eta$. Then $\zeta_{\theta} \leq \eta_{\theta}$.

Proof. We will be sufficient to prove that if U is θ -open in (X,ζ) , then it is also θ -open in (X,η) . Let U be a θ -open set in (X,ζ) . Then $U=int_{\theta}^{\zeta}(U)$. Let $x\in U$. Then there exists a closed neighborhood V of x in (X,ζ) which contained in U. Since $\zeta\leq\eta$, By above Lemma 2.1, V is also a closed neighborhood V of x in (X,η) which contained in U. This implies $U\subset int_{\theta}^{\eta}(U)\subset U$. Hence U is θ -open in (X,η) . This completes the proof.

3. Topologies on the family $\tau(X)$ induced from by a given topology τ

Let (X, τ) be a topological space. We want to give some topologies on $\tau(X)$ induced by the given topology τ and compare these topologies.

DEFINITION 3.1. [5] Let (X, τ) be a topological space, and $G \in \tau$. Let $i(G) = \{\zeta \in \tau(X) \mid G \in \zeta\}$ and denote $\epsilon = \{i(G) \mid G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology In_{τ} on $\tau(X)$ with ϵ as a subbasis. We will call this topology as inner topology induced by the topology τ . Note that In_1 need not be the discrete topology in $\tau(X)$.

THEOREM 3.2. [4] $(\tau(X), In_1)$ is T_0 space.

Let $\zeta \leq \eta$. For all $G \in \zeta$, $G \in \eta$. That is, if $\zeta \in i(G)$, then $i(G) \cap \{\eta\} \neq \emptyset$. This implies $\zeta \in \overline{\{\eta\}}$. Conversely $\zeta \in \overline{\{\eta\}}$ implies

 $\zeta \leq \eta$. If this relation holds we say that ζ is a specialization of η [7]. For any $\eta \in \tau(X)$ we will denote the subset $\{\zeta \in \tau(X) | \zeta \geq \eta\}$ by \uparrow (η). (We shall also use later the notation \downarrow (η) for $\{\zeta \in \tau(X) | \zeta \leq \eta\}$. Then since $i(G) = \{\zeta \in \tau(X) | G \in \zeta\}$, $i(G) = \uparrow (\{\emptyset, X, G\})$. Hence $\zeta \in \overline{\{\eta\}}$ iff $\zeta \leq \eta$. Since $Alexandrov\ topology\ \Upsilon$ on $\tau(X)$ is the correction of all $upper\ sets$ in $\tau(X)$ (i.e. sets U such that $\eta \in U$ and $\eta \leq \zeta$ imply $\zeta \in U$) [7], $i(G) \in \Upsilon$. Hence we have the following result

THEOREM 3.3. [4] If $\tau \leq \zeta \leq 1$, then $In_{\tau} \leq In_{\zeta} \leq In_{1} \leq \Upsilon$.

Combining this theorem and Theorem 1.1 we can have

COROLLARY 3.4.
$$In_{\tau_{\theta}} \leq In_{\tau_{s}} \leq In_{\tau} \leq In_{1} \leq \Upsilon$$
,
 $(In_{\tau})_{\theta} \leq (In_{\tau})_{s} \leq In_{\tau} \leq In_{1} \leq \Upsilon$.

Now we will consider the continuity of induced maps. The next theorem was known in [4]:

THEOREM 3.5. Let $f:(X, \tau) \to (Y, \eta)$ be a continuous map. If we define a map $f_*:(\tau(X), In_\tau) \to (\tau(Y), In_\eta)$ by $f_*(w) = \{U \subset Y | f^{-1}(U) \in w\}$, then the map f_* is continuous. If $\gamma \leq \delta$, then $f_*(\gamma) \leq f_*(\delta)$ and $f_*(\tau) \geq \eta$. If, furthermore, (Z, θ) is a topological space and $g: (Y, \eta) \to (Z, \theta)$ is a map, then

$$(g \circ f)_* = g_* \circ f_*.$$

Finally, if $f:(X,\tau)\to (X,\tau)$ is the identity homeomorphism, then so is f_* .

If we consider In as a map from $\tau(X)$ to $\tau(\tau(X))$ defined by $In(\eta) = In_{\eta}$, then we have some result:

THEOREM 3.6. [4] $In: (\tau(X), \Upsilon) \to (\tau(\tau(X)), \Upsilon)$ is continuous.

Proof. Let $\zeta \in \tau(X)$ and K is a neighborhood of $In(\zeta) = In_{\zeta}$. Then K is a upper set in $\tau(\tau(X))$. On the other hand the upper set $\uparrow(\zeta)$ in $\tau(X)$ is a neighborhood of ζ . We will show that $In(\uparrow(\zeta)) \subset K$. Let $\delta \in \uparrow(\zeta)$. Then $\delta \geq \zeta$ and $In_{\delta} \geq In_{\zeta}$. Hence we have $In_{\delta} \in K$.

COROLLARY 3.7. $In: (\tau(X), In_{\tau}) \to (\tau(\tau(X)), In_{In_{\tau}})$ is continuous.

Proof. Since In_{τ} is subset of Υ whose elements i(G)s are all upper set, it is clear that the restriction function is continuous.

Let $f:(X,\tau)\to (Y,\eta)$ be a continuous surjective map. If we define a map $f_*:\tau(X)\to\tau(Y)$ by $f_*(w)=\{U\subset Y|f^{-1}(U)\in w\}$, then $f_*(0)=0$ and $f_*(1)=1$. Let $\omega\in\tau(X)$. For any subbasic open neighborhood

i(G) of $f_*(\omega)$, $G \in f_*(\omega)$. Thus $f^{-1}(G) \in \omega$. Hence $\omega \in i(f^{-1}(G))$. So that $i(f^{-1}(G))$ is an open neighborhood of ω . Conversely, if $\zeta \in i(f^{-1}(G))$ then $f^{-1}(G) \in \zeta$, $G \in f_*(\zeta)$, $f_*(\zeta) \in i(G)$, and $\zeta \in f_*^{-1}(i(G))$. Consequently we have

$$f_*^{-1}(i(G)) = i(f^{-1}(G)).$$

Note that $i(G) \cup \{0\}$ is also complete sublattice of $\tau(X)$ for a $G \in \tau$. We will denote this sublattice $i(G) \cup \{0\}$ by $i_F(G)$. Then naturally we can restrict domain of definition of f_* to $i_F(H)$ for some open H in X. Hence we can have $f_*: i_F(f^{-1}(G)) \to i_F(G)$ for each open G in (Y, η) . Thus we can have:

THEOREM 3.8. [4] Let $f:(X, \tau) \to (Y, \eta)$ be a continuous bijective map. Then the induce map $f_*: i_F(f^{-1}(G)) \to i_F(G)$ is bijective for each open G in (Y, η) .

Let X, Y be sets. Then the cardinality of $\tau(X) \times \tau(Y)$ is quite different to the cardinality of $\tau(X \times Y)$. For example, let $X = \{a, b\}, Y = \{1, 2, 3, \}$. Then $\operatorname{card}(\tau(X)) = 4$, $\operatorname{card}(\tau(Y)) = 29$. But $\operatorname{card}(\tau(X \times Y)) = 209525$ [9].

Hence we have $\tau(X \times Y) \ncong \tau(X) \times \tau(Y)$ in general.

Let (X, τ) and (Y, ζ) be topological spaces. We may assume that $\tau(X)$ and $\tau(Y)$ are given the topologies In_{τ} and In_{ζ} respectively and assume that $\tau(X \times Y)$ is given topology $In_{\tau \times \zeta}$. The multiplication $\times : \tau(X) \times \tau(Y) \to \tau(X \times Y)$ is defined by $\times (\alpha, \beta) = \alpha \times \beta$ naturally. Then we have

Theorem 3.9. The multiplication $\times : \tau(X) \times \tau(Y) \to \tau(X \times Y)$ is continuous.

Proof. Let $(\alpha, \beta) \in \tau(X) \times \tau(Y)$. Then $\alpha \times \beta \in \tau(X \times Y)$. If i(W) is a neighborhood of $\times (\alpha, \beta) = \alpha \times \beta$, where W is open in $(X \times Y, \tau \times \zeta)$. Then we may assume that $W = W_X \times W_Y$ is basic open set in $(\tau(X \times Y), \alpha \times \beta)$. Hence since projection maps are open maps, $\pi_X(W) = W_X$ and $\pi_Y(W) = W_Y$ are also open sets in (X, α) and (Y, β) respectively. Hence $(\alpha, \beta) \in i(W_X) \times i(W_Y)$. Moreover $\times (i(W_X) \times i(W_Y)) \subset i(W)$. In fact, if $\delta \in i(W_X)$ and $\gamma \in i(W_Y)$, then $W_X \in \delta$ and $W_Y \in \gamma$. Hence $W = W_X \times W_Y \in \delta \times \gamma$. This completes the proof.

Hence we have

THEOREM 3.10. Let (X, τ) and (Y, ζ) be topological spaces. Then we have the following commutative diagram:

$$\begin{array}{cccc} \tau(X) \times \tau(Y) & \xrightarrow{\times} & \tau(X \times Y) \\ \downarrow In \times In & \downarrow In \\ \tau(\tau(X)) \times \tau(\tau(Y)) & \xrightarrow{\times} & \tau(\tau(X \times Y)). \end{array}$$

Proof. It is sufficient to show that $\times (In_{\alpha} \times In_{\beta}) = In_{\alpha \times \beta}$ for an element $(\alpha, \beta) \in \tau(X) \times \tau(Y)$. Let $(\alpha, \beta) \in i(U) \times i(V) \in In_{\alpha} \times In_{\beta}$. Then U and V are open sets in (X, α) and (Y, β) respectively. Hence $U \times V$ is an open set in $(X \times Y, \alpha \times \beta)$. Hence $U \times V \in (\alpha \times \beta)$, i.e. $(\alpha \times \beta) \in \times (i(U) \times i(V)) \subset i(U \times V)$. Hence $\times (In_{\alpha} \times In_{\beta}) \subset In_{\alpha \times \beta}$. Conversely if $\delta \times \gamma \in i(W)$ where W is an open in $(X \times Y, \tau \times \zeta)$. Then we may assume that $W = W_X \times W_Y$ is basic open set in $(X \times Y, \tau \times \zeta)$. Hence, the projections $\pi_X(W) = W_X$ and $\pi_Y(W) = W_Y$ are open sets in (X, τ) and (Y, ζ) respectively. Moreover $\times (i(W_X) \times i(W_Y)) \subset i(W)$. Consequently we have $\times (In_{\alpha} \times In_{\beta}) \supset In_{\alpha \times \beta}$ This completes the proof.

4. Topology on the family $\tau(X)$ related to the θ topologies on X

DEFINITION 4.1. Let (X, τ) be a topological space, and $G \in \tau$. Let $\theta(G) = \{\zeta \in \tau(X) \mid G \text{ is } \theta - \text{ open in } \zeta \}$. And denote $\beta = \{\theta(G) | G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology θ_{τ} on $\tau(X)$ with β as a subbasis. We will call the θ_{τ} the θ topology induced by the topology τ .

Theorem 4.2. If
$$\tau \leq \zeta \leq 1$$
, then $\theta_{\tau} \leq \theta_{\zeta} \leq \theta_{1} \leq \Upsilon$.

Proof. For any $G \in \tau \leq \zeta$, by the definition of $\theta(G)$, we can naturally have $\theta_{\tau} \leq \theta_{\zeta}$. Now we will prove that every $\theta(G)$ is upper set in $\tau(X)$. Let $\delta \in \theta(G)$. Then G is an θ -open in (X, δ) . Hence $G \in \delta_{\theta}$. If $\delta \leq \gamma$, we have by Theorem 2.1, $G \in \gamma_{\theta}$. This means G is θ -open in (X, γ) . That is $\gamma \in \theta(G)$. Hence $\theta(G)$ is upper set in $\tau(X)$. This completes the proof.

Now we consider θ as a map from $\tau(X)$ to $\tau(X)$. Then we can define map θ by $\theta(\eta) = \eta_{\theta}$. Consequently we have next result:

THEOREM 4.3. Let (X, τ) be a topological space. Then the induced map

$$\theta: (\tau(X), \theta_{\tau}) \to (\tau(X), \theta_{\tau})$$

is continuous.

Proof. Let $\zeta \in \tau(X)$ and $\theta(K)$ is a neighborhood of $\theta(\zeta) = \zeta_{\theta}$ where $K \in \tau$. Then since $\zeta_{\theta} = \{U \in \zeta | U : \theta - \text{open in } (X, \zeta)\}$, K is a θ -open set in (X, ζ_{θ}) . Hence it is also θ -open in (X, ζ) . Consequently $\zeta \in \theta(K)$, i.e. $\theta(K)$ is a neighborhood of ζ which satisfied that $\theta(\theta(K)) \subset \theta(K)$. This completes the Theorem.

The map $\theta: (\tau(X), \theta_{\tau}) \to (\tau(X), \theta_{\tau})$ will be called θ -operator. Moreover this map satisfies that

COROLLARY 4.4. $\theta(\zeta \wedge \eta) \leq \theta(\zeta) \wedge \theta(\eta)$ and $\theta(\zeta) \vee \theta(\eta) \leq \theta(\zeta \vee \eta)$.

Proof. This corollary follows from the above definition of map θ and Theorem 4.1.

Now we want to know the relations between θ_{τ} and $In_{\tau_{\theta}}$. Let $\eta \in \theta(G) \in \theta_{\tau}$, then $G \in \eta$, i.e. $\eta \in i(G)$. Hence it is natural that $\theta(G) \subset i(G)$. Let i(G) be a sub basic open in $In_{\tau_{\theta}}$. Then $G \in \tau_{\theta}$. Hence G is θ -open in τ , that is , $G = int_{\theta}^{\tau}(G)$. Hence if $\eta \in i(G)$ and (X, η) is regular, then by above Theorem 1.2, G is also θ -open in (X, η) . Hence $\eta \in \theta(G)$, i.e. $i(G) = \theta(G)$. Thus we have the following theorem.

THEOREM 4.5. Let (X, τ) is a regular space. If we denote $\tau_{reg}(X)$ by the subset of all regular topologies in $\tau(X)$. Then the subspace $\tau_{reg}(X)$ of the space $(\tau(X), \theta_{\tau})$ and the subspace $\tau_{reg}(X)$ of the space $(\tau(X), In_{\tau_{\theta}})$ are identical.

For a topological space (X, τ) , the correction of all open neighborhoods of p and empty set, that is, $\{V \in \tau | p \in V\} \cup \{\emptyset\}$ becomes a topology on X for any point $p \in X$. We will denote such a topology by τ_p and call *localized topology* of τ at p. Furthermore, we will denote the localized topology of the discrete topology $\mathcal{P}(X)$ on X at p by 1_p .

Denote $\tau_p(X) = \{\eta_p \mid \eta \in \tau(X)\}$ for a point $p \in X$. Since $\tau(X)$ is a complete lattice, we can easily find that $\tau_p(X)$ is a sublattice of $\tau(X)$. The smallest element of this sublattice $\tau_p(X)$ is $0_p=0$, the largest element is $\mathcal{P}(X)_p=1_p\neq 1$. We will call this sublattice $\tau_p(X)$ as sublattice of all localized topologies at p in X.

Now we will regard any member τ of $\tau(X)$ as a map from X to $\cup_p \tau_p(X) \subset \tau(X)$ defined by $\tau(p) = \tau_p$. Hence this map τ acts like a vector field on X. Such a map $f: X \to \tau(X)$ defined by $f(p) \in \tau_p(X)$ will be called *topology field* on X [5].

THEOREM 4.6. [5] Topology field $\zeta:(X,\tau)\to(\tau(X),\,In_\tau)$ is continuous.

Now we will prove

THEOREM 4.7. If (X, ζ) is a θ topological space, then the topology field $\zeta:(X,\tau) \to (\tau(X), \theta_{\tau})$ is continuous.

Proof. Let $p \in X$ and $\theta(G)$ be a subbasic open neighborhood of $\zeta(p) = \zeta_p$. Then G is θ -open in (X, ζ_p) . This implies G is θ -open in (X, ζ) because G is open set in (X, ζ) which contains the point p. Moreover since $G \in \tau$, G is a neighborhood of p. Hence if $q \in G$, $\zeta(q) = \zeta_q \in \theta(G)$, so that $\zeta(G) \subset \theta(G)$. This shows that topology field ζ is continuous.

COROLLARY 4.8. If (X,ζ) is a regular topological space, then the topology field $\zeta:(X,\tau)\to(\tau(X),\,\theta_\tau)$ is continuous.

Let $f:(X,\tau)\to (Y,\eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X),\theta_\tau)\to (\tau(Y),\theta_\eta)$ by $f_*(w)=\{U\subset Y|f^{-1}(U)\in w\}$, then $f_*(0)=0$ and $f_*(1)=1$. Let $\omega\in\tau(X)$. For any subbasic open neighborhood $\theta(G)$ of $f_*(\omega)$ in $(\tau(Y),\theta_\eta)$, where G is open in (Y,η) , G is θ -open in $(Y,f_*(\omega))$. By Theorem1.4 $f^{-1}(G)$ is θ -open in (X,ω) . Thus $\omega\in\theta(f^{-1}(G))$. Hence $\theta(f^{-1}(G))$ is an open neighborhood of ω in $(\tau(X),\theta_\tau)$.

Now we will prove that $f_*(\theta(f^{-1}(G))) \subset \theta(G)$. Let $\zeta \in \theta(f^{-1}(G))$. Then $f^{-1}(G)$ is θ -open in (X,ζ) . Since naturally the map $f:(X,\zeta) \to (Y,f_*(\zeta))$ is continuous, G is θ -open in $(Y,f_*(\zeta))$. This implies that $f_*(\zeta) \in \theta(G)$. Thus we have

THEOREM 4.9. Let $f:(X, \tau) \to (Y, \eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X), \theta_\tau) \to (\tau(Y), \theta_\eta)$ by $f_*(w) = \{U \subset Y | f^{-1}(U) \in w\}$, then the map f_* is continuous. If $\gamma \leq \delta$, then $f_*(\gamma) \leq f_*(\delta)$ and $f_*(\tau) \geq \eta$. And for any θ topology field ζ , the diagram

$$(X,\tau) \qquad \xrightarrow{f} \qquad (Y,\eta)$$

$$\downarrow \zeta \qquad \qquad \downarrow f_*(\zeta)$$

$$(\tau(X),\theta_\tau) \qquad \xrightarrow{f_*} \qquad (\tau(Y),\theta_\eta)$$

commutes. Furthermore, if (Z, λ) is a topological space and $g: (Y, \eta) \to (Z, \lambda)$ is a map, then

$$(g \circ f)_* = g_* \circ f_*.$$

Finally, if $f:(X,\tau)\to (X,\tau)$ is the identity homeomorphism, then so is f_* .

Proof. The continuity of the map $f_*:(\tau(X),\theta_\tau)\to(\tau(Y),\theta_\eta)$ was proved already. And the commutativity of the diagram follows from

the next fact.

$$f_*(\zeta_p) = \{U|f^{-1}(U) \in \zeta_p\}$$

$$= \{U|p \in f^{-1}(U) \in \zeta\}$$

$$= \{U|f(p) \in U, f^{-1}(U) \in \zeta\}$$

$$= \{U|U \in f_*(\zeta), f(p) \in U\}$$

$$= f_*(\zeta)_{f(p)}.$$

All other statements follow directly from the definitions.

Additionally, if f is open and closed and $\omega \in \theta(f^{-1}(G))$, then $f^{-1}(G)$ is θ -open in (X, ω) . By the Theorem 1.5, G is θ -open in $(X, f_*(\omega))$, i.e. $f_*(\omega) \in \theta(G)$. That is, $\omega \in f_*^{-1}(\theta(G))$. Consequently we have the following theorem.

THEOREM 4.10. If $f:(X,\tau)\to (Y,\eta)$ is a continuous and open and closed surjective map, then for any open G in Y

$$f_*^{-1}(\theta(G)) = \theta(f^{-1}(G)).$$

Let (X, τ) and (Y, ζ) be topological spaces. We may assume that $\tau(X)$ and $\tau(Y)$ are given the topologies θ_{τ} and θ_{ζ} respectively and assume that $\tau(X \times Y)$ is given topology $\theta_{\tau \times \zeta}$. Next theorem is the result.

Theorem 4.11. The multiplication $\times : \tau(X) \times \tau(Y) \to \tau(X \times Y)$ is continuous.

Proof. Let $(\alpha, \beta) \in \tau(X) \times \tau(Y)$. Then $\alpha \times \beta \in \tau(X \times Y)$. If $\theta(W)$ is a neighborhood of $\times(\alpha, \beta) = \alpha \times \beta$, where W is open in $(X \times Y, \tau \times \zeta)$. Then we may assume that $W = W_X \times W_Y$ is basic open set in $(\tau(X \times Y), \tau \times \zeta)$. Since projection maps are open maps, $\pi_X(W) = W_X$ and $\pi_Y(W) = W_Y$ are also open sets in (X, τ) and (Y, ζ) respectively. Since W is θ -open in $(\tau(X \times Y), \alpha \times \beta)$, projection maps W_X and W_Y are θ -opens in (X, α) and (Y, β) respectively. Hence $(\alpha, \beta) \in \theta(W_X) \times \theta(W_Y)$. Moreover $\times(\theta(W_X) \times \theta(W_Y)) \subset \theta(W)$. In fact, if $\delta \in \theta(W_X)$ and $\gamma \in \theta(W_Y)$, then W_X is θ -open in (X, δ) and W_Y is θ -open in (Y, γ) . Since the product of θ -opens is θ -open [6], $W = W_X \times W_Y$ is θ -open in $(X \times Y, \delta \times \gamma)$. Therefore $\delta \times \gamma \in \theta(W)$. This completes the proof.

Hence we have

THEOREM 4.12. Let (X,τ) and (Y,ζ) be topological spaces. Then

$$\tau_{\theta} \times \zeta_{\theta} = (\tau \times \zeta)_{\theta}$$
.

Consequently we have the following commutative diagram:

Proof. Let $U \times V \in \tau_{\theta} \times \zeta_{\theta}$. Then U, V are θ -open sets in (X, τ) , (Y, ζ) respectively. By the Theorem 5 in [6], $U \times V$ is a θ -open set in $(X \times Y, \tau \times \zeta)$. Hence $U \times V \in (\tau \times \zeta)_{\theta}$. Conversely if W is a θ -open in $(X \times Y, \tau \times \zeta)$. Then projection $\pi_X(W)$ and $\pi_Y(W)$ are θ -opens in (X, τ) and (Y, ζ) respectively. This completes the proof.

Again we consider Θ as a map from $\tau(X)$ to $\tau(\tau(X))$ defined by $\Theta(\eta) = \theta_{\eta}$, then we have next result:

THEOREM 4.13. Let (X, τ) be a topological space. Then the induced map

$$\Theta: (\tau(X), \Upsilon) \to (\tau(\tau(X)), \Upsilon)$$

is continuous.

Proof. Let $\zeta \in \tau(X)$ and K is a neighborhood of $\Theta(\zeta) = \theta_{\zeta}$ where K is upper set in $\tau(\tau(X))$. On the other hand the upper set $\uparrow(\zeta)$ in $\tau(X)$ is a neighborhood of ζ . We will show that $\Theta(\uparrow(\zeta)) \subset K$. Let $\delta \in \uparrow(\zeta)$. Then $\delta \geq \zeta$ and $\theta_{\delta} \geq \theta_{\zeta}$. Hence we have $\theta_{\delta} \in K$.

The map $\Theta : (\tau(X), \theta_{\tau}) \to (\tau(X), \theta_{\tau})$ will be called Θ -operator from $\tau(X)$ to $\tau(\tau(X))$.

COROLLARY 4.14. Let (X,τ) be a topological space. Then the induced map

$$\Theta: (\tau(X), \theta_{\tau}) \to (\tau(\tau(X)), \theta_{\theta_{\tau}})$$

is continuous.

References

- [1] H. M. Darwesh, A new topology from old one, Journal of the chungcheong mathematical society 25 (2012), no. 3, 401-413.
- [2] G. Grätzer, General Lattice Theory, Basel: Birkhäuser, (1978).
- [3] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10 (1958), 547-553.
- [4] J.-R. Kim, Topology fields, toplogical flow and topological organisms, Journal of the Chungcheong mathematical society 26 (2013).
- [5] J.-R. Kim and M. H. Woo, *Topology Fields and Fixed Points of Flows*, Research and Exposition in Mathematics **27** (2003), 73-81, ©2003 Heldermann Verlag.
- [6] P. E. Long and L. L. Herrongton, The T_{θ} -Topology and Fanitly Continous Functions, Kyungpook Math. J. **22** (1982), no. 1, 7-14.

- [7] P. T. Johnstone, Stone spaces, Cambridge University Press, (1982).
- [8] R. E. Larson and S. J. Andima, *The lattice of topologies: A survey*, Rockey mountain Jour. Math. **5**, no. 2, Spring (1975).
- [9] V. Krisnamurthy, On the number of topologies on a finite set, Amer. Math. Monthly 73 (1966), 154-157.
- [10] A. K. Steiner, The lattice of topologies: Structure and Complementation, Trans. Amer. Math. Soc. 3 (1963), 167-171.
- [11] M. H. Stone, Application of the Theroy if Boolean rings to General Topology, Amer. Math. Soc. Trans. 41 (1937), 375-381.
- [12] N. V. Veličko, *H-closed Topological Spaces*, Amer. MAth. Soc. Trans. **2(78)** (1969), 103-118.

*

Department of Mathematics Kookmin University Seoul 136-702, Republic of Korea *E-mail*: kimjr@kookmin.ac.kr