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STABILITY FOR A CUBIC FUNCTIONAL EQUATIONS
IN NON-ARCHIMEDEAN NORMED SPACES

Chang Il Kim* and Chang Hyeob Shin**

Abstract. In this paper, we investigate the functional equation

f(3x+y)+f(3x−y) = f(x+2y)+2f(x−y)+6f(2x)+3f(x)−6f(y)

and prove the generalized Hyers-Ulam stability for it in non-Archimedean
normed spaces.

1. Introduction and preliminaries

S. M. Ulam [15] raised a question concerning the stability of functional
equations in 1940 : Let G1 be a group and let G2 be a meric group with
the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a
mapping h : G1 −→ G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 −→ G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In 1941, Hyers [6] solved the Ulam problem for the case of approxi-
mately additive functions in Banach spaces. Since then, the stability of
several functional equations have been extensively investigated by sev-
eral mathematicians [2, 5, 7, 8]. Rassias [13], Jun and Kim [9] and Park
and Jung [12] introduced the following functional equations

(1.1) f(x + 2y) + 3f(x) = 3f(x + y) + f(x− y) + 6f(y)

and

(1.2) f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x)

and

(1.3) f(3x + y) + f(3x− y) = 3f(x + y) + 3f(x− y) + 48f(x)
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and they established general solutions and the generalized Hyers-Ulam-
Rassias stability problem for this functional equations, respectively. It
is easy to see that the function f(x) = cx3 is a solution of the functional
equations (1.1), (1.2) and (1.3). Thus, it is natural that (1.1), (1.2) and
(1.3) are called a cubic functional equations and every solution of the
cubic functional equation is said to be a cubic mapping.

In this paper, we consider the following functional equation

f(3x + y) + f(3x− y)

= f(x + 2y) + 2f(x− y) + 6f(2x) + 3f(x)− 6f(y).
(1.4)

We prove the generalized Hyers-Ulam stability of (1.4) in complete
non-Archimedean normed spaces.

A valuation is a function | · | from a field K into [0,∞) such that,
for any r, s ∈ K, the following conditions hold: (i) |r| = 0 if and only if
r = 0, (ii) |rs| = |r||s|, (iii) |r + s| ≤ |r|+ |s|.

A field K is called a valued field if K carries a valuation. The usual
absolute values of R and C are examples of valuations. If the triangle
inequality is replaced by |r + s| ≤ max{|r|, |s|} for all r, s ∈ K, then the
valuation | · | is called a non-Archimedean valuation and a field with a
non-Archimedean valuation is called non-Archimedean field. If | · | is a
non-Archimedean valuation on K, then clearly, |1| = | − 1| and |n| ≤ 1
for all n ∈ N.

Definition 1.1. Let X be a vector space over a scalar field K with a
non-Archimedean nontrivial valuation | · |. A function ‖ · ‖ : X −→ R is
called a non-Archimedean norm (valuation) if it satisfies the following
conditions:

(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖rx‖ = |r|‖x‖,
(c) the strong triangle inequality (ultrametric), that is,

‖x + y‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X and all r ∈ K.

If ‖ · ‖ is a non-Archimedean norm, then (X, ‖ · ‖) is called a non-
Archimedean normed space.

Let (X, ‖ · ‖) be a non-Archimedean normed space. Let {xn} be a
sequence in X. Then {xn} is said to be convergent if there exists an
x ∈ X such that limn→∞ ‖xn−x‖ = 0. In that case, x is called the limit
of the sequence {xn} and one denotes it by limn→∞ xn = x. A sequence
{xn} is said to be Cauchy in (X, ‖ · ‖) if limn→∞ ‖xn+p− xn‖ = 0 for all
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p ∈ N. By (c) in Definition 1.1,

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ | m ≤ j ≤ n− 1} (n > m)

and hence a sequence {xn} is Cauchy in (X, ‖ · ‖) if and only if se-
quence {xn+1 − xn} converges to zero in (X, ‖ · ‖). By a complete non-
Archimedean normed space we mean one in which every Cauchy sequence
is convergent.

Throughtout this paper, X is a non-Archimedean normed space and
Y a complete non-Archimedean normed space.

2. The Generalized Hyers-Ulam stability for (1.4)

In 2003, Jun and Kim [10] introduced the following cubic functional
equation

(2.1) f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y)

and proved the generalized Hyers-Ulam stability for it in Banach spaces.
In this section, we prove the generalized Hyers-Ulam stability of func-
tional equation (1.4) in complete non-Archimedean normed spaces. We
start the following theorem.

Theorem 2.1. Let f : X −→ Y be a mapping. Then f satisfies (1.4)
if and only if f is cubic.

Proof. Suppose that f satisfies (1.4). Letting x = y = 0 in (1.4), we
have f(0) = 0. Letting y = 0 in (1.4), we have

(2.2) f(3x)− 3f(2x)− 3f(x) = 0

for all x ∈ X and letting x = 0 in (1.4) and relpacing y by x, we have

(2.3) 7f(x)− f(−x)− f(2x) = 0

for all x ∈ X. Letting y = x in (1.4), we have

(2.4) f(4x)− f(3x)− 5f(2x) + 3f(x) = 0

for all x ∈ X. By (2.2) and (2.4), we get

(2.5) f(4x) = 23f(2x)

for all x ∈ X. Repalcing 2x by x in (2.5), we get

(2.6) f(2x) = 23f(x)

for all x ∈ X. By (2.2) and (2.6), we get

(2.7) f(3x) = 33f(x)
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for all x ∈ X. By (2.3) and (2.6), we get

(2.8) f(−x) = −f(x)

for all x ∈ X. Replacing y by 3y in (1.4), by (2.6) and (2.7), we have

(2.9) 27f(x+y)+27f(x−y) = f(x+6y)+2f(x−3y)+51f(x)−6f(3y)

for all x, y ∈ X. Interchanging x and y in (2.9), by (2.8), we have

(2.10) 27f(x+y)−27f(x−y) = f(6x+y)−2f(3x−y)+51f(y)−6f(3x)

for all x, y ∈ X. Replacing y by 2y in (2.10), by (2.6), we have

27f(x + 2y)− 27f(x− 2y)

= 8f(3x + y)− 2f(3x− 2y) + 408f(y)− 6f(3x)
(2.11)

for all x, y ∈ X. Letting y = −y in (2.11), by (2.8), we have

27f(x− 2y)− 27f(x + 2y)

= 8f(3x− y)− 2f(3x + 2y)− 408f(y)− 6f(3x)
(2.12)

for all x, y ∈ X. By (2.11) and (2.12), we get

(2.13) 8[f(3x+y)+f(3x−y)]−2[f(3x+2y)+f(3x−2y)]−12f(3x) = 0

for all x, y ∈ X. Letting x =
x

3
in (2.13), we have

f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y)

for all x, y ∈ X and so f is additive-quadratic-cubic [10]. By (2.6), f is
cubic. The converse is trivial.

For a given mapping f : X −→ Y , we define the difference operator
Df : X2 −→ Y by

Df(x, y) = f(3x + y) + f(3x− y)

− f(x + 2y)− 2f(x− y)− 6f(2x)− 3f(x) + 6f(y)

for all x, y ∈ X.

Theorem 2.2. Let φ : X2 −→ [0,∞) be a mapping such that

(2.14) lim
n→∞

φ(2nx, 2ny)
|2|3n

= 0

for all x, y ∈ X and let for each x ∈ X, the following limit

lim
n→∞max

{{ 1
|2|

φ(2j−1x, 0)
|2|3(j−1)

: 0 ≤ j < n
}
∪

{φ(2j−1x, 2j−1x)
|2|3(j−1)

: 0 ≤ j < n
}}(2.15)
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denoted by φ̃(x), exist. Suppose that f : X −→ Y is a mapping satisfy-
ing

(2.16) ‖Df(x, y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a cubic mapping C : X −→ Y such
that

(2.17) ‖C(x)− f(x)‖ ≤ 1
|2|6 φ̃(x)

for all x ∈ X. In addition, if the limit

lim
i→∞

lim
n→∞max

{{ 1
|2|

φ(2j−1x, 0)
|2|3(j−1)

: i ≤ j < n + i
}
∪

{φ(2j−1x, 2j−1x)
|2|3(j−1)

: i ≤ j < n + i
}}

= 0
(2.18)

exists for all x ∈ X, then C is the unique cubic mapping satisfying
(2.17).

Proof. Putting x = y = 0 in (2.16), we have

‖f(0)‖ ≤ 1
|2|2 φ(0, 0)

and since 1 ≤ 1
|2| , we get

‖f(0)‖ ≤ 1
|2|3 φ(0, 0) ≤ 1

|2|3n
φ(0, 0)

for all n ∈ N. By (2.14), f(0) = 0.
Putting y = 0 in (2.16), we have

(2.19) ‖f(3x)− 3f(2x)− 3f(x)‖ ≤ 1
|2|φ(x, 0)

for all x ∈ X. Putting y = x in (2.16), we have

(2.20) ‖f(4x)− f(3x)− 5f(2x) + 3f(x)‖ ≤ φ(x, x)

for all x ∈ X. By (2.19) and (2.20), we get

(2.21) ‖f(4x)− 8f(2x)‖ ≤ max
{ 1
|2|φ(x, 0), φ(x, x)

}

for all x ∈ X. Replacing x by 2n−1x and dividing by |2|3(n+1) in (2.21),
we get
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∥∥∥f(2n+1x)
23(n+1)

− f(2nx)
23n

∥∥∥

≤ 1
|2|6 max

{ 1
|2|

φ(2n−1x, 0)
|2|3(n−1)

,
φ(2n−1x, 2n−1x)

|2|3(n−1)

}(2.22)

for all x ∈ X. By (2.14) and (2.22), we get
{f(2nx)

23n

}
is Cauchy se-

quence. Since Y is complete, we conclude that
{f(2nx)

23n

}
is convergent.

Set

C(x) := lim
n→∞

f(2nx)
23n

.

Using induction one can show that

∥∥∥f(2nx)
23n

− f(x)
∥∥∥ ≤ 1

|2|6 max

{{ 1
|2|

φ(2j−1x, 0)
|2|3(j−1)

: 0 ≤ j < n
}
∪

{φ(2j−1x, 2j−1x)
|2|3(j−1)

: 0 ≤ j < n
}}(2.23)

for all n ∈ N and all x ∈ X. By taking n to infinity in (2.23) and by
(2.15), we obtain (2.17). Replacing x and y by 2nx and 2ny, respectively,
and dividing by |2|3n in (2.16) and taking the limit as n →∞, by (2.14),
we get

C(3x+y)+C(3x−y) = C(x+2y)+2C(x−y)+6C(2x)+3C(x)−6C(y)

for all x, y ∈ X. Therefore the mapping C : X −→ Y satisfies (1.4) and
so by Theorem 2.1, C is cubic.

Suppose that (2.18) holds. If C ′ is another cubic mapping satisfying
(2.17), then by (2.18),

‖C(x)− C ′(x)‖ = lim
i→∞

1
|2|3i

‖C(2ix)− C ′(2ix)‖

≤ lim
i→∞

1
|2|3i

max{‖C(2ix)− f(2ix)‖, ‖f(2ix)− C ′(2ix)‖}

≤ 1
|2|6 lim

i→∞
lim

n→∞max

{{ 1
|2|

φ(2j−1x, 0)
|2|3(j−1)

: i ≤ j < n + i
}
∪

{φ(2j−1x, 2j−1x)
|2|3(j−1)

: i ≤ j < n + i
}}

= 0

for all x ∈ X and so C = C ′.
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From Theorem 2.2, we obtain the following corollary concerning the
stability of (1.4).

Corollary 2.3. Let αi : [0,∞) −→ [0,∞) (i = 1, 2, 3) be mappings
satisfying

(i) αi(|2|) 6= 0,
(ii) αi(|2|t) ≤ αi(|2|)αi(t) for all t ≥ 0, and

(iii) α1(|2|) < |2| 32 , α2(|2|) < |2|3, and α3(|2|) < |2|3.
Let f : X −→ Y be a mapping such that

‖Df(x, y)‖ ≤ δ[α1(‖x‖)α1(‖y‖) + α2(‖x‖) + α3(‖y‖)]
for all x, y ∈ X and some δ > 0. Suppose that |2| < 1. Then there exists
a unique cubic mapping C : X −→ Y such that

‖C(x)− f(x)‖ ≤ 1
|2|6 φ̃(x)

for all x ∈ X, where

φ̃(x) = δ|2|2max

{
α2(‖x‖)
α2(|2|) , |2|

[(α1(‖x‖)
α1(|2|)

)2
+

α2(‖x‖)
α2(|2|) +

α3(‖x‖)
α3(|2|)

]}
.

Proof. Let φ(x, y) = δ[α1(‖x‖)α1(‖y‖) + α2(‖x‖) + α3(‖y‖)]. Then
for any n ∈ N

φ(2nx, 2ny)
|2|3n

=
δ

|2|3n

[
α1(|2|n‖x‖)α1(|2|n‖y‖) + α2(|2|n‖x‖) + α3(|2|n‖y‖)

]

≤ δ

[((α1(|2|))2
|2|3

)n
α1(‖x‖)α1(‖y‖) +

(α2(|2|)
|2|3

)n
α2(‖x‖)

+
(α3(|2|)

|2|3
)n

α3(‖y‖)
]

for all x, y ∈ X. By (iii), we have

lim
n→∞

φ(2nx, 2ny)
|2|3n

= 0

for all x, y ∈ X. Hence φ satisfies (2.14) in Theorem 2.2.
Let x ∈ X and j ∈ N ∪ {0}. Then

1
|2|

φ(2j−1x, 0)
|2|3(j−1)

≤ δ

|2|
(α2(|2|)

|2|3
)j−1

α2(‖x‖)

and
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φ(2j−1x, 2j−1x)
|2|3(j−1)

≤ δ

[((α1(|2|))2
|2|3

)j−1
(α1(‖x‖))2

+
(α2(|2|)

|2|3
)j−1

α2(‖x‖) +
(α3(|2|)

|2|3
)j−1

α3(‖x‖)
]

for all x ∈ X. By (iii), we obtain

lim
i→∞

lim
n→∞max

{{ 1
|2|

φ(2j−1x, 0)
|2|3(j−1)

: i ≤ j < n + i
}
∪

{φ(2j−1x, 2j−1x)
|2|3(j−1)

: i ≤ j < n + i
}}

= 0

for all x ∈ X and so φ satisfies (2.18) in Theorem 2.2. Hence by Theorem
2.2, we have the result.

Example 2.4. Let δ > 0 and p be a real number with p > 3
2 . Suppose

that |2| < 1. Let f : X −→ Y is a mapping satisfying

‖Df(x, y)‖ ≤ δ(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X −→ Y
satisfying (1.4) such that

‖C(x)− f(x)‖ ≤ δ|2|−2(p+2) max{1, 3|2|}‖x‖2p

for all x ∈ X.

We have the following result which is analogous Theorem 2.2 for the
functional equation (1.4).

Theorem 2.5. Let φ : X2 −→ [0,∞) be a mapping such that

lim
n→∞ |2|

3nφ
( x

2n
,

y

2n

)
= 0

for all x, y ∈ X and for each x ∈ X, and let for each x ∈ X, the following
limit

lim
n→∞max

{{ |2|3(j+2)

|2| φ
( x

2j+2
, 0

)
: 0 ≤ j < n

}
∪

{
|2|3(j+2)φ

( x

2j+2
,

x

2j+2

)
: 0 ≤ j < n

}}

denoted by φ1(x), exist. Suppose that f : X −→ Y is a mapping
satisfying f(0) = 0 and

‖Df(x, y)‖ ≤ φ(x, y)



Stability for a cubic functional equations in non-Archimedean normed spaces361

for all x, y ∈ X. Then there exists a cubic mapping C : X −→ Y
satisfying (1.4) such that

(2.24) ‖C(x)− f(x)‖ ≤ 1
|2|6 φ1(x)

for all x ∈ X. In addition, if the limit

lim
i→∞

lim
n→∞max

{{ |2|3(j+2)

|2| φ
( x

2j+2
, 0

)
: i ≤ j < n + i

}
∪

{
|2|3(j+2)φ

( x

2j+2
,

x

2j+2

)
: i ≤ j < n + i

}}
= 0,

then C is the unique cubic mapping satisfying (2.24).

The following corollary is an immediate consequence of Theorem 2.5.

Corollary 2.6. Let αi : [0,∞) −→ [0,∞) (i = 1, 2, 3) be mappings
satisfying

(i) αi

(
1
|2|

) 6= 0,

(ii) αi

(
t
|2|

) ≤ αi

(
1
|2|

)
αi(t) for all t ≥ 0, and

(iii) α1

(
1
|2|

)
< 1

|2| 32
, α2

(
1
|2|

)
< 1

|2|3 , and α3

(
1
|2|

)
< 1

|2|3 .

Let f : X −→ Y be a mapping such that f(0) = 0 and

‖Df(x, y)‖ ≤ δ[α1(‖x‖)α1(‖y‖) + α2(‖x‖) + α3(‖y‖)]
for all x, y ∈ X and some δ > 0. Then there exists a unique cubic
mapping C : X −→ Y such that

‖C(x)− f(x)‖ ≤ 1
|2|6 φ1(x)

for all x ∈ X, where

φ1(x) = δ|2|6max

{
1
|2|

(
α2

( 1
|2|

))2
α2(‖x‖),

(
α1

( 1
|2|

))4
(α1(‖x‖))2+

(
α2

( 1
|2|

))2
α2(‖x‖) +

(
α3

( 1
|2|

))2
α3(‖x‖)

}
.

Example 2.7. Let δ > 0 and p be a real number with p < 3
2 . Suppose

that |2| < 1. Let f : X −→ Y is a mapping satisfying f(0) = 0 and

‖Df(x, y)‖ ≤ δ(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p)
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for all x, y ∈ X. Then there exists a unique cubic mapping C : X −→ Y
satisfying (1.4) such that

‖C(x)− f(x)‖ ≤ δ|2|−(4p+1)max
{

1, 3|2|
}
‖x‖2p

for all x ∈ X.
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