DOI QR코드

DOI QR Code

Brain Activity Related with Mathematics Anxiety

  • YUN, Eun Jeong (Yangpyung Elementary School) ;
  • SHIN, In Sun (Department of Mathematics Education, Korea National University of Education)
  • Received : 2015.05.20
  • Accepted : 2015.06.30
  • Published : 2015.06.30

Abstract

For the purpose of determining neurophysiological mechanism of math anxiety, we conducted an EEG measurement for 22 sixth grade elementary students including 11 students with high math anxiety (HMA group), and 11 students with low math anxiety (LMA group). We found that in HMA group, delta wave was significantly generated from the right frontal lobe, and in LMA group, four paths are clearly connected while they perform math tasks (right inferior occipital gyrus ${\leftrightarrow}$ left superior parietal lobule /left middle frontal gyrus ${\leftrightarrow}$ left inferior parietal lobule /left middle frontal gyrus ${\leftrightarrow}$ right inferior parietal lobule / right middle frontal gyrus ${\leftrightarrow}$ right inferior parietal lobule). According to the above results we suggest that math anxiety is related to emotions associated with pain, reduces working memory and has a negative effect on math performance.

Keywords

References

  1. Aiken, L. R. (1976) Update on attitude and other affective variable in learning mathematics. Review of Educational Research, 46, 293-311. https://doi.org/10.3102/00346543046002293
  2. Aini, A. H.; Ahmad, N. Y.; Siti, Z. M. & Mazlyfarina, M. (2011). Brain activation during addition and subtraction tasks in-noise and in-quiet. Malaysian J. Med Sci, 18(2), 3-15.
  3. Andrew, S. (2003). Symptoms in the mind (3rd ed.). London: Elsevier.
  4. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Review Neuroscience 9, 278-291. https://doi.org/10.1038/nrn2334
  5. Arsalidou, M. & Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 54, 2382-2393 https://doi.org/10.1016/j.neuroimage.2010.10.009
  6. Ashcraft, M, H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science 11, 181-185. https://doi.org/10.1111/1467-8721.00196
  7. Ashcraft, M, H. & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General 130, 224-237. https://doi.org/10.1037/0096-3445.130.2.224
  8. Ashcraft, M, H. & Krause, A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review 14, 243-248. https://doi.org/10.3758/BF03194059
  9. Ashcraft, M. H. & Ridely, K. S. (2005). Math anxiety and its cognitive consequences. In: J. I. D. Campbell (Ed). Handbook of mathematical cognition (pp. 315-327). New York: Psychology Press.
  10. Aubele, T.; Freeman, D.; Hausner, L. & Reynolds, S. (2011). Train Your Brain to Get Rich: The Simple Program That Primes Your Gray Cells for Wealth, Prosperity, and Financial Security. Avon, MA, USA: Adams Media. [Korean Edition Trans. by Kim Yumi (2013). Seoul, Korea: Jisunggonggan]
  11. Baars, B. J. & Gage N. M. (Eds.) (2007). Cognition, brain, and consciousness: introduction to cognitive neuroscience. London, UK: Elsevier / Burlington, MA, USA: Academic Press [Korean Edition Trans. by Gang, Bonggyun (2010). Seoul, Korea: Kyobomungo]
  12. Baars, B. J. & Gage, N. M. (2010). Cognition, brain and consciousness. 2nd Edition. Burlington, MA, USA: Academic Press / London, UK: Elsevier.
  13. Beck, A. T. & Emery, G. (1985). Anxiety disorders and phobias: A cognitive perspective. New York: Basic books.
  14. Bond, M. R. (1976). Psychological and psychiatric aspects of pain. In: J. G. Howells (Ed.). Modern Perspectives in the Psychiatric Aspects of Surgery (pp. 109-139). London: Macmillan.
  15. Brodman, K. (1909). Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestelt anf grund des zellenbaues. Leipzig, Grmany: Johann Ambrosius Barth.
  16. Bynner, J. & Parsons, S. (1997). Does numeracy matter? Evidence from the national child development study on the impact of poor numeracy on adult life. London: Basic Skills Agency.
  17. Cassady, J. C. & Johnson, R. E. (2002). Cognitive test anxiety and academic performance. Contemporary Educational Psychology 27, 270-295. https://doi.org/10.1006/ceps.2001.1094
  18. Choi, J. S. (1988). Correlational and causal relationships between general, test, academic and mathematics anxiety, and mathematics achievement. Doctorate Thesis. Daegu, Korea: Kyungpook National University.
  19. Choi, J. Y. (2012). Throwing away Anxiety by Psychiatrist Choi Juyeon MED. Seoul, Korea: Soulmate.
  20. Christina, B. Y.; Sarah, S. W. & Menon, V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science 23(5), 492-501. https://doi.org/10.1177/0956797611429134
  21. Decety, J. (2011). Dissecting the neural mechanisms mediating Empathy. Emotion Review 3(1), 92-108. https://doi.org/10.1177/1754073910374662
  22. Fairclough, S. H.; Venables, L. & Tattersall, A. (2005). The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171-184. https://doi.org/10.1016/j.ijpsycho.2004.11.003
  23. Funahashi, S.; Bruce, C. J. & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic 'scotomas'. J. Neurosci, 13(4), 1479-1497.
  24. Gevins, A. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing and practice. Cerebral Cortex 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
  25. Gevins, A. & Smith, M. E. (2000). Neurophysiological measure of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex 10(9), 829-839. https://doi.org/10.1093/cercor/10.9.829
  26. Goodale, M. A. & Milner, A. D. (1992). Seperate pathways for perception and action. Trends in Neuroscience 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8
  27. Goodale, M. A. & Humphrey, G. K. (1998). The objects of action and perception. Cognition 67(1-2), 181-207. https://doi.org/10.1016/S0010-0277(98)00017-1
  28. Gough, M. F. (1954). Mathemaphobia: Causes and treatments. Clearing House 28, 240-249
  29. Hamann, S. & Canli, T. (2004). Individual differences in emotion processing. Current Opinion in Neurobiology 14(2), 233-238. https://doi.org/10.1016/j.conb.2004.03.010
  30. Hansen. L. & Monk, M. (2002). Brain development, structuring of learning and science education: Where are we now? A review of some recent research. International Journal of Science Education 24(4), 343-356.
  31. IASP (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. In: Task force on taxonomy, suppl. 3. Seatle, WA, USA: IASP Press.
  32. Jain, S. & Dowson, M. (2009). Mathematics anxiety as a function of multidimensional selfregulation and self-efficacy. Contemporary Educational Psychology 34, 240-249. https://doi.org/10.1016/j.cedpsych.2009.05.004
  33. Jeong, S. J. (2007). Brain Wave Reading - Step by Step. Seoul, Korea: Gunja Publisher
  34. Kim, Y. J.; Kim, J.Y. & Kwon, C. S (2005). Differences in EEG activity between science-gifted and average children of elementary schools in creative science problem solving. Korean Journal of Biological Education 33(1), 23-32.
  35. Klem, G. H.; Luders, H. O.; Jasper, H. H. & Elger, C. (1999). The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalography And Clinical Neurophysiology. Supplement 52, 3-6.
  36. Kong, J.; Wang C.; Kwong, K.; Vangel, M.; Chua, E. & Gollub, R. (2004). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research 22, 397-405.
  37. Kross, E.; Berman, M. G.; Smith, E. E & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Science of the United States of America 108(15), 6270-5. https://doi.org/10.1073/pnas.1102693108
  38. Lee, I. S. & Kwon, Y. J. (2011). A study on the brain science analysis method for the evaluation of scientific hypothesis -focused on the effective connectivity. Brain & Learning 1(1), 3-16.
  39. Lee, J. (2009). Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learning and Individual Differences 19, 355-365. https://doi.org/10.1016/j.lindif.2008.10.009
  40. Lee, J. H. & Kim, S. J. (2010). Analysis of affective factors on mathematics learning according to the results of PISA 2003. School Mathematics 12(2), 219-237.
  41. Lee, J. O.; Sin. A. G.; Choi, B. S.; Park, G. T. & Kwon, Y. J. (2004). Desynchronization and correlation coefficient of brain waves during scientific thinking process. Journal of the Korean Association for Research in Science Education 24(2), 226-233.
  42. Lee, S. H. (2011). Brain wave vibration. Seoul, Dan World
  43. Lyons, I. M. & Beilock, S. L. (2012a). Mathematics Anxiety: Separating the math from the anxiety. Cerebral Cortex 22(9), 2102-2110. doi: 10.1093/cercor/bhr289
  44. Lyons, I. M. & Beilock, S. L. (2012b). When math hurts: math anxiety predicts pain network activation in anticipation of doing math. PloS One 7(10), e48076. https://doi.org/10.1371/journal.pone.0048076
  45. Ma, X. (1999). Meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. J. Res. Math. Educ. 30(5), 520-540. https://doi.org/10.2307/749772
  46. Maloney, E. A.; Risko, E. F.; Ansari, D. & Fugelsang, J. (2010). Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition 114(2), 293-297. https://doi.org/10.1016/j.cognition.2009.09.013
  47. Maloney, E. A.; Schaeffer, M. W. & Beilock, S. L. (2013). Mathematics anxiety and stereotype threat: shared mechanism, negative consequences and promising interventions, Res. Math. Educ. 15(2), 115-128. ME 2014c.00124 doi: 10.1080/14794802.2013.797744.
  48. Marie, A. & Margot, J. T. (2010). Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 54, 2382-2393.
  49. Mattarella-Micke, A.; Mateo, J.; Kozak, M. N.; Foster & Beilock, S. L. (2011). Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math anxiety. Emotion 114, 1000-1005. doi: 10.1037/a0023224.
  50. Ohman, A. (2008). Fear and anxiety. In: M. Lewis, J. M. Haviland & Barrett-Feldman, L. (Eds.), Handbook of emotions (3rd ed., pp. 709-728). New York: Guilford Press.
  51. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  52. Price, C. J. & Friston, K. J. (1997). Cognitive conjunction: A new approach to brain activation experiments. NeuroImage 5, 261-270. https://doi.org/10.1006/nimg.1997.0269
  53. Ramirez, G. & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science 331(6014), 211-213. https://doi.org/10.1126/science.1199427
  54. Ramirez, G.; Gunderson, E. A.; Levine, S. C. & Beilock S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development 14(2), 187-202. https://doi.org/10.1080/15248372.2012.664593
  55. Richardson, F. C. & Suinn, R. M. (1972). The mathematics anxiety rating scale; Psychometric data. Journal of Counseling Psychology 19, 551-554. https://doi.org/10.1037/h0033456
  56. Rivera, S. M.; Reiss, A. L.; Eckert, M. A. & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex 15, 1779-1790. https://doi.org/10.1093/cercor/bhi055
  57. Rubinsten, O. & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions 6, Article 46.
  58. Sarason, I. G., Sarason, B. R., & Pierce, G. R. (1995). Cognitive interference:At the intelligence-personality crossroads. In: D. Saklofske & M. Zeidner (Eds.), International handbook of personality and intelligence (pp. 285-296). New York: Plenum.
  59. Seong, T. J. (2007). Easy Statistical Anaysis using SPSS/AMOS. Seoul, Hakjisa
  60. Suarez-Pellicioni, M.; Nunez-Pena, M. I. & Colome, A. (2013). Mathematical anxiety effects on simple arithmetic processing efficiency: An event-related potential study. Biological Psychology 94, 517-526. https://doi.org/10.1016/j.biopsycho.2013.09.012
  61. Suinn, R. M.; Taylor, S. & Edwards, R. W. (1988). Suinn mathematics anxiety rating scle for elementary school students (MARS-E): Psychometric and normative data. Educational and Psychological Measurement 48, 979-986. https://doi.org/10.1177/0013164488484013
  62. Taylor, K. S.; Seminowicz, D. A. & Davis, K. D. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30(9), 2731-2745. doi: 10.1002/hbm.20705
  63. Tyrer, P. J. (1999). Anxiety: A multydisciplinary review. London: World Scientific Publications.
  64. Vukovic, R. F.; Kiffer, M. J.; Bailey, S. P. & Harari, R. R. (2013). Mathematics anxiety in young children: Concurrent and lonitudinal associations with mathematical performance. Contemp. Educ. Psychol. 38(1), 1-10. https://doi.org/10.1016/j.cedpsych.2012.09.001
  65. Wigfield, A. & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. J. Educ. Psychol. 80, 210-216. https://doi.org/10.1037/0022-0663.80.2.210
  66. Yixuan, K.; Bo, H.; Wenjing, Z.; Mark, B. & Yong-Di, Z. (2012). Sequential neural processes in abacus mental addition: An EEG and fMRI case study. Plosone 7(5), 1-15.
  67. Young, C. B.; Wu, S. S. & Menon, V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science 23(5), 492-501. https://doi.org/10.1177/0956797611429134
  68. Zeidner, M. & Matthews, G. (2011). Anxiety101. New York: Springer Publishing Company.