DOI QR코드

DOI QR Code

총 편익과 공 편익에 기반한 자동차 배출저감 정책의 통합관리 전략

Integrated Management Strategy of Vehicle Emission Reduction Policies Based on Total Benefits and Co-benefits

  • 이규진 (아주대학교 TOD기반 지속가능 도시.교통연구센터) ;
  • 박관휘 (동부엔지니어링(주) 교통연구실) ;
  • 심상우 (아주대학교 TOD기반 지속가능 도시.교통연구센터) ;
  • 최기주 (아주대학교 교통시스템공학과)
  • LEE, Kyu Jin (TOD-based Sustainable City Transportation Research Center, Ajou University) ;
  • PARK, Kwan Hwee (Department of Transportation Researcher, Dongbu Engineering Co., Ltd.) ;
  • SHIM, Sang Woo (TOD-based Sustainable City Transportation Research Center, Ajou University) ;
  • CHOI, Keechoo (Department of Transportation System Engineering, Ajou University)
  • 투고 : 2015.03.09
  • 심사 : 2015.08.18
  • 발행 : 2015.08.31

초록

현재의 자동차 배출관리 전략은 단일 배출물질 중심의 정책 접근법으로 인해 정책 효과의 상호 중복이 발생하므로 이를 방지하고 효율적 예산 활용을 위해 통합적 시각에서의 교통-환경 정책을 수립할 필요가 있다. 이에 본 연구에서는 정책들의 개별 또는 통합 추진에 따른 총 편익과 공 편익의 비교를 통해 교통-환경 통합관리 전략의 시사점 도출을 목적으로 한다. 연구결과, 휘발유와 경유를 함께 절감할 수 있는 '승용차 요일제 & 노후 화물차 조기폐차' 정책(MIX-4)의 통합관리가 PM과 $CO_2$를 함께 저감하여 총 편익이 높은 것으로 나타났으며, 배출량 영향인자인 통행량, 통행속도, 배출계수의 3요소를 동시에 제어할 수 있는 '승용차 요일제 & 환경 정책'(MIX-1~4), '혼잡 통행료 부과제 & 환경 정책'(MIX-5~8)의 통합관리가 공 편익 측면에서 더 효과적인 것으로 나타났다. 이러한 결과로 볼 때, 교통-환경 정책의 통합관리는 건강에 유해한 대기오염물질과 기후 변화에 영향을 미치는 온실가스를 동시에 저감시킬 수 있으며, 정책 추진의 효율성을 제고하는데 기여할 것으로 기대된다.

This study aims to propose integrated management strategies based on the relationship between co-benefits and total benefits of greenhouse gases and air pollutant emissions for establishing a transport and environmental policy. The results show that the integrated management of the following policies: 'Car Free Day' and 'Early Scrapping of Decrepit Diesel Vehicle', which are used for reducing reduce gasoline and diesel, can together reduce both PM and $CO_2$ emissions and increase total benefits. In addition, the integrated management of 'Car Free Day' with environment policies and 'Congestion Charge' with environment policies simultaneously controls the three factors which influence emissions, including travel volume, travel speed and emissions factor, and was found to be effective in terms of co-benefits. This study reduces both air pollutants, which are harmful to health, and greenhouse gas emissions, which influence climate change, and improves the efficiency of policy through the integrated management of policies.

키워드

참고문헌

  1. Cheong J. P., Shin Y. S., Im S. B., Shin K. W., Kim C. H. (2011), Case Study Analysis and Evaluation for Integrated Environmental Management System, Rainbow Books.
  2. Choi K. J., Lee K. J., Ahn S. C. (2009), An Improvement of Bottom Up Approach for Estimating the Mobile Emission Level, J. Korean Soc. Transp., 27(4), Korean Society of Transportation, 183-193.
  3. Gyeonggi Research Institute (2002), Estimating Automotive Emission Levels in SMA and Evaluating Transportrelated Environment Policies.
  4. Hwang B. K. (2010), Analysis and Prospection Green House Gas Emissions in Korea by Using Bottom-Up Model, Master's Thesis, Keimyung University.
  5. Incheon Development Institute (2010), Integrated Environmental Strategy for Air Pollutants and Greenhouse Gases in Incheon.
  6. IPCC (2006), IPCC Guidelines for National Greenhouse Gas Inventories, Institute for Global Environmental Strategies and IPCC National Greenhouse Gas Inventories Programme Technical Support Unit.
  7. Jang J. H. (2012), Evaluation of Co-reduction Effect of GHGs and Air Pollutants by Road Transport Sector Policies in Busan Metropolitan City, Master's Thesis, Kyungsung University.
  8. Korea Development Institute (2008), Korean Preliminary Feasibility Study Guidebook (5th).
  9. Korea Environment Institute (1996), Management of Integrated Pollution for Discharging Store (배출업소에 대한 통합오염관리방안).
  10. Korea Environment Institute (2010), Integrated Environmental Strategies (6th).
  11. Korea Transport Institute (2010), A Study on Expressway Congestion Charge.
  12. Korea Transport Institute (2012), A Review of the Effectiveness and Feasibility of HOV Lane on Highway.
  13. Ku Y. H. (2011), Assessing the Potential Greenhouse Gas Emission Reductions of Transportation Demand Management Policies Using Travel Demand Model, Master's Thesis, Kyungsung University.
  14. Lee J. K., Han D. H., Oh C. K., Oh K. K. (2013), Expressway Greenhouse Gas Reduction Effect Analysis According to the Electric Vehicle Supply, J. Korean Soc. Transp., 31(5), Korean Society of Transportation, 37-47. https://doi.org/10.7470/jkst.2013.31.5.037
  15. Lee K. J., Choi K. J., Yu J. W., Oh S. C. (2011), Variable Emission Factor Prediction Model for An Air Quality Assessment of Transportation Projects, J. Korean Soc. Transp., 29(6), Korean Society of Transportation, 117-128.
  16. Metha T., Mahmassani H. S., Bhat C. R. (2001), Methodologies for Evaluating Environment Benefits of Intelligent Transportation Systems, Report No. FHWA/TX-04197-1, Center for Transportation Research (The University of Texas at Austin), Austin, Texas.
  17. Ministry of Land, Transport and Maritime Affairs (2011), Transportation Facility Investment Evaluation Guidelines (4th).
  18. Rakha H., Van Aerde M., Ahn K., Trani A. A. (2000), Requirements for Evaluating Traffic Signal Control Impacts on Energy and Emissions Based on Instantaneous Speed and Acceleration Measurements, Transp. Res. Record 1738, Transportation Research Board, 57-67.
  19. Zietsman J., Perkinson D. G., Bochner B. S., Bynum J. (2004), Transit as a Potential Emissions Reduction Strategy, Proc. of 84th TRB Annual Meeting, Washington D.C.