Inequalities for a Polynomial and its Derivative

Mohammad Syed Pukhta

Division of Agri. Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 191121, India
e-mail: mspukhta_67@yahoo.co.in
Abstract. In this paper we consider the class of polynomials of the type $p(z)=$ $z^{s}\left(a_{0}+\sum_{j=\mu}^{n-s} a_{j} z^{j}\right), 1 \leq \mu \leq n-s, 0 \leq s \leq n-1$ having some zeros at origin and rest of zeros on or outside the boundary of a prescribed disk, and obtain the generalization of well known results.

1. Introduction and Statement of Results

Let $p(z)$ be a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is a well known result of S-Bernstein [4]. Equality holds in (1.1) if and only if $p(z)$ has all its zeros at the origin. If we restrict ourselves to the class of polynomial not vanishing in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

Equality holds in (1.2) for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$. Inequality (1.2) was conjectured by Erdös and later verified lax [6].

As an extension of (1.2) Malik [7] proved that if $p(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

The result is sharp and equality holds for $p(z)=(z+k)^{n}$. under the same hypothesis, Govil [10]. proved that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=k}|p(z)|\right\} . \tag{1.4}
\end{equation*}
$$

Received January 25, 2014; accepted August 21, 2014.
2010 Mathematics Subject Classification: 30A10, 30C10, 30D15, 41A17.
Key words and phrases: Derivative, polynomial, inequality, Zeros.

Chan and Malik [2] generalized inequality (1.4) and proved the following.
Theorem A. Let $p(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$ be a polynomial of degree n having all its zeros in $|z| \geq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{\mu}} \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.

Pukhta [8] improved the inequality (1.5) and proved the following result.
Theorem B. Let $p(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$ be a polynomial of degree n having all its zeros in $|z| \geq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=k}|p(z)|\right\} . \tag{1.6}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.
Theorem C. Let $p(z)$ be a polynomial of degree n having all its zeros in $|z|=k$, $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n}+k^{n-1}} \max _{|z|=1}|p(z)| \tag{1.7}
\end{equation*}
$$

Theorem C is due to Govil [5].
For the polynomial of type $p(z)=c_{n} z^{n}+\sum_{\nu=\mu}^{n} c_{n-\nu} z^{n-\nu}, 1 \leq \mu<n$, Theorem C was generalized by Dewan and Hans [3] and proved the following.
Theorem D. Let $p(z)=c_{n} z^{n}+\sum_{\nu=\mu}^{n} c_{n-\nu} z^{n-\nu}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| \tag{1.8}
\end{equation*}
$$

In this paper we consider the class of polynomials of type $p(z)=z^{s}\left(a_{0}+\sum_{j=\mu}^{n-s} a_{j} z^{j}\right)$, $1 \leq \mu<n-s, 0 \leq s \leq n-1$ and proved the following generalizations of Theorem B and Theorem D.
Theorem 1. Let $p(z)=z^{s}\left(a_{0}+\sum_{j=\mu}^{n-s} a_{j} z^{j}\right), 1 \leq \mu<n-s, 0 \leq s \leq n-1$, be a polynomial of degree n having s-fold zeros at the origin and remaining n-s zeros in $|z|>k, k \geq 1$, then

$$
\begin{aligned}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq & \frac{\left(\begin{array}{l}
(n-s)^{2}\left|a_{0}\right|+(n-s) \mu\left|a_{\mu}\right| k^{\mu+1} \\
+s(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right) \\
+s \mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)
\end{array}\right)}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)} \max _{|z|=1}|p(z)| \\
& -\frac{(n-s)^{2}\left|a_{0}\right|+(n-s) \mu\left|a_{\mu}\right| k^{\mu+1}}{k^{s}(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)} \min _{|z|=k}|p(z)| .
\end{aligned}
$$

If we take $\mu=1$ in Theorem 1, we get the following result.
Corollary 1. Let $p(z)=z^{s}\left(a_{0}+\sum_{j=0}^{n-s} a_{j} z^{j}\right), 0 \leq s \leq n-1$, be a polynomial of degree n having s-fold zeros at the origin and remaining $n-s$ zeros in $|z|>k$, $k \geq 1$, then

$$
\begin{aligned}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq & \frac{\binom{(n-s)^{2}\left|a_{0}\right|+(n-s)\left|a_{1}\right| k^{2}}{+s(n-s)\left|a_{0}\right|\left(1+k^{2}\right)+2 s\left|a_{1}\right| k^{2}}}{(n-s)\left|a_{0}\right|\left(1+k^{2}\right)+2\left|a_{1}\right| k^{2}} \max _{|z|=1}|p(z)| \\
& -\frac{(n-s)^{2}\left|a_{0}\right|+(n-s)\left|a_{1}\right| k^{2}}{k^{s}(n-s)\left|a_{0}\right|\left(1+k^{2}\right)+2\left|a_{1}\right| k^{2}} \min _{|z|=k}|p(z)|
\end{aligned}
$$

Next we prove the following result which is an extension of Theorem D for the polynomial of the type $p(z)=z^{s}\left(a_{n-s} z^{n-s}+\sum_{j=\mu}^{n-s} a_{n-s-j} z^{n-s-j}\right), 1 \leq \mu<n-s$, $0 \leq s \leq n-1$.
Theorem 2. Let $p(z)=z^{s}\left(a_{n-s} z^{n-s}+\sum_{j=\mu}^{n-s} a_{n-s-j} z^{n-s-j}\right), 1 \leq \mu<n-s$, $0 \leq s \leq n-1$ be a polynomial of degree n having s-fold zeros at the origin and remaining $n-s$ zeros in $|z|>k, k \geq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{(n-s)}{k^{n-s-\mu+1}}\left\{\frac{(n-s)\left|a_{n-s}\right| k^{2 \mu}+\mu\left|a_{n-s-\mu}\right| k^{\mu-1}}{\binom{\left(\mu\left|a_{n-s-\mu}\right|\left(1+k^{\mu-1}\right)\right.}{+(n-s)\left|a_{n-s}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}}+s\right\} \max _{|z|=1}|p(z)|
$$

By choosing $\mu=1$ in Theorem 2, we get the following result.
Corollary 2. Let $(z)=z^{s}\left(a_{n-s} z^{n-s}+\sum_{j=1}^{n-s} a_{n-s-j} z^{n-s-j}\right), 0 \leq s \leq n-1$ be a polynomial of degree n having s-fold zeros at the origin and remaining $n-s$ zeros in $|z|=k, k \geq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{(n-s)}{k^{n-s}}\left\{\frac{(n-s)\left|a_{n-s}\right| k^{2}+\left|a_{n-s-1}\right|}{2\left|a_{n-s-1}\right|+(n-s)\left|a_{n-s}\right|\left(1+k^{2}\right)}+s\right\} \max _{|z|=1}|p(z)|
$$

For the proof of theorems, we need the following lemmas.

2. Lemmas

Lemma 1. Let $p(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z| \geq k, k \geq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n\left[\frac{n\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}{n\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}\right] \max _{|z|=1}|p(z)|
$$

The above lemma is due to Qazi [9, lemma 1].

Lemma 2. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-\nu}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-\mu+1}}\left[\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right|\left(k^{2 \mu}+k^{\mu-1}\right)+\mu\left|a_{n-1}\right|\left(k^{2 \mu}-k^{\mu-1}\right)}\right] \max _{|z|=1}|p(z)|
$$

The above lemma is due to M.S. Pukhta, Abdullah Mir and T.A. Raja [1].

3. Proof of the Theorems

Proof of Theorem 1. Let

$$
\begin{equation*}
p(z)=z^{s} H(z) \quad \text { where } H(z)=a_{0}+\sum_{j=\mu}^{n-s} a_{j} z^{j} \tag{1}
\end{equation*}
$$

is a polynomial of degree $n-s$ having all its zeros in $|z|>k, k \geq 1$. From (1) we have

$$
\begin{aligned}
z p^{\prime}(z) & =s z^{s} H(z)+z^{s+1} H^{\prime}(z) \\
& =s p(z)+z^{s+1} H^{\prime}(z)
\end{aligned}
$$

This gives for $|z|=1$,

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leq s|p(z)|+\left|H^{\prime}(z)\right| \tag{2}
\end{equation*}
$$

Inequality (2) holds for all points on $|z|=1$ and hence

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leq s|p(z)|+\max _{|z|=1}\left|H^{\prime}(z)\right| \tag{3}
\end{equation*}
$$

Let $m=\min _{|z|=k}|H(z)|$, then $m \leq|H(z)|$ for $|z|=k$. As all $n-s$ zeros of $|H(z)|$ lie in $|z|>k, k \geq 1$, therefore for every complex number λ such $|\lambda|<1$, it follows by Rouche's Theorem that all the zeros of the polynomial $H(z)-\lambda m$ of degree $n-s$ lie in $|z|>k, k \geq 1$. Therefore, By using Lemma 1 to the polynomial $H(z)-\lambda m$ of degree $n-s$, we get

$$
\begin{gather*}
\max _{|z|=1}\left|H^{\prime}(z)\right| \leq(n-s)\left\{\frac{(n-s)\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}\right\} \\
\cdot \max _{|z|=1}|H(z)-\lambda m| \tag{4}
\end{gather*}
$$

Choosing the argument of λ such that

$$
\begin{equation*}
|H(z)-\lambda m|=|H(z)|-|\lambda| m \quad \text { for }|z|=1 \tag{5}
\end{equation*}
$$

And letting $|\lambda| \rightarrow 1$, we get from (4) and (5)

$$
\begin{gather*}
\max _{|z|=1}\left|H^{\prime}(z)\right| \leq(n-s)\left\{\frac{(n-s)\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}\right\} \\
\cdot \max _{|z|=1}(|H(z)|-m) \tag{6}
\end{gather*}
$$

Combining inequalities (3) and (6), we obtain

$$
\begin{aligned}
\left|H^{\prime}(z)\right| \leq & (n-s)\left\{\frac{(n-s)\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}\right\} \\
& \cdot \max _{|z|=1}|H(z)|-\left|H^{\prime}(z)\right| \\
\leq & (n-s)\left\{\frac{(n-s)\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}\right\} m+s|p(z)|
\end{aligned}
$$

From (1) we have $|p(z)|=|H(z)|$ on $|z|=1$ and that one can easily obtain

$$
m=\min _{|z|=k}|H(z)|=\frac{1}{k^{s}} \min _{|z|=k}|p(z)| .
$$

This gives from (7)

$$
\begin{aligned}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq & \frac{\binom{(n-s)^{2}\left|a_{0}\right|+(n-s) \mu\left|a_{\mu}\right| k^{\mu+1}}{+s(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+s \mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)}}{(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)} \max _{|z|=1}|p(z)| \\
& -\frac{(n-s)^{2}\left|a_{0}\right|+(n-s) \mu\left|a_{\mu}\right| k^{\mu+1}}{k^{s}(n-s)\left|a_{0}\right|\left(1+k^{\mu+1}\right)+\mu\left|a_{\mu}\right|\left(k^{\mu+1}+k^{2 \mu}\right)} \min _{|z|=k}|p(z)|
\end{aligned}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2 Let

$$
\begin{equation*}
p(z)=z^{s} H(z) \quad \text { where } H(z)=a_{n-s} z^{n-s}+\sum_{j=\mu}^{n-s} a_{n-s-j} z^{n-s-j} \tag{8}
\end{equation*}
$$

is a polynomial of degree $n-s$ having all its zeros on $|z|=k, k \leq 1$. By using Lemma 2 to the polynomial $H(z)$ of degree $n-s$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|H^{\prime}(z)\right| \leq \frac{(n-s)}{k^{n-s-\mu+1}}\left\{\frac{(n-s)\left|a_{n-s}\right| k^{2 \mu}+\mu\left|a_{n-s-\mu}\right| k^{\mu-1}}{\binom{\mu\left|a_{n-s-\mu}\right|\left(1+k^{\mu-1}\right)}{+(n-s)\left|a_{n-s}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}}+s\right\} \max _{|z|=1}|H(z)| \tag{9}
\end{equation*}
$$

From (7) one can easily obtain for $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leq s|p(z)|+\max _{|z|=1}\left|H^{\prime}(z)\right| \tag{10}
\end{equation*}
$$

On combining the inequalities (9) and (10) and using the fact that for $|z|=1$, $|p(z)|=|H(z)|$, we get

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{(n-s)}{k^{n-s-\mu+1}}\left\{\frac{(n-s)\left|a_{n-s}\right| k^{2 \mu}+\mu\left|a_{n-s-\mu}\right| k^{\mu-1}}{\binom{\mu\left|a_{n-s-\mu}\right|\left(1+k^{\mu-1}\right)}{+(n-s)\left|a_{n-s}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}}+s\right\} \max _{|z|=1}|p(z)|
$$

This completes the proof of Theorem 2.

References

[1] M. S. Pukhta, Abdullah Mir and T. A. Raja, Note on a theorem of S. Bernstein, J. Comp. \& Math. Sci., 1(14)(2010), 419-423.
[2] T. N. Chan and M. A. Malik, On Erdos-Lax Theorem, Proc. Indian Acad. Math. Sci., 92(3)(1983), 191-193.
[3] K. K. Dewan and Sunil Hans, On extremal properties for the derivative of polynomials, Mathematica balkanica, 23(Fasc. 1-2)(2009), 27-35.
[4] S. Bernestein, Lecons sur less propries extremales et la meilleure dune functions rella, Paris, 1926.
[5] N. K. Govil, On a theorem of S. Bernstein, J. Math. and Phy. Sci., 14(1980), 183-187.
[6] P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Amer. Math. Soc. Bull., 50(1944), 509-513.
[7] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 2(1)(1969).
[8] M. S. Pukhta, Extremal Problems for Polynomials and on location of zeros of polynomials, Ph.D. Thesis, Jamia Millia Islamia, New Delhi, (1995).
[9] M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343.
[10] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66(1)(1991), 29-35.

