DOI QR코드

DOI QR Code

Studies on Cure Kinetics and Thermal Stability of Epoxy/Nylon 6 Blend

에폭시/나일론6 블랜드의 경화 동력학 및 열안정성에 관한 연구

  • Kim, Dong-Kyu (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Kwan-Woo (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Han, Woong (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kwac, Lee-Ku (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
  • 김동규 (한국탄소융합기술원 연구개발본부) ;
  • 김관우 (한국탄소융합기술원 연구개발본부) ;
  • 한웅 (한국탄소융합기술원 연구개발본부) ;
  • 곽이구 (전주대학교 탄소융합공학과) ;
  • 김병주 (한국탄소융합기술원 연구개발본부)
  • Received : 2015.02.04
  • Accepted : 2015.08.25
  • Published : 2015.10.10

Abstract

In this work, effects of the blend composition composed of 0, 10, 20, 30 and 40 wt% of nylon 6 to epoxy (diglycidylether of bisphenol-A, DGEBA) resin were investigated in terms of cure kinetics and thermal stability by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). As the content of the nylon 6 increased, the maximum exothermic temperature ($T_{max}$) and the value of cure activation energy ($E_a$) decreased. The maximum exothermic temperature of the blending samples decreased with increasing in nylon 6 content, resulting in the decrease in curing activation energy of them due to the rapid curing reaction with epoxy resin in this system. From TGA analysis results of the DGEBA/nylon 6, the thermal stability based on the thermal stability index ($A^*{\cdot}K^*$) and integral procedure decomposition temperature (IPDT) increased with increase in the nylon 6 content. This was because of the combination of DGEBA and nylon 6 having good heat resistance, resulting in improving thermal stability of the DGEBA/nylon 6.

본 연구에서는 epoxy (Diglycidylether of bisphenol-A, DGEBA)에 대한 nylon 6의 혼합비가 각각 0, 10, 20, 30, 40 wt%로 블랜딩한 혼합 수지를 시차 주사 열량계(DSC)와 열 중량 분석(TGA)을 사용하여 경화 동력학 및 열안정성에 관하여 연구하였다. 실험 결과, nylon 6의 함량이 증가함에 따라 최대 발열 온도($T_{max}$)가 낮아지며, 경화 활성화 에너지($E_a$) 값은 감소하였다. 이는, nylon 6의 함량이 증가함에 따라 DGEBA와 결합이 빠르게 이루어져 최대 발열 온도에 영향을 미친다고 판단된다. DGEBA/nylon 6의 TGA 분석 결과 nylon 6의 함량이 증가할수록 열안정지수($A^*{\cdot}K^*$) 및 적분 열분해 진행 온도(IPDT)에 입각한 열안정성이 증가하였다. 이러한 결과는 내열성이 우수한 nylon 6가 DGEBA와 결합하여 DGEBA/nylon 6 내부에 유입되는 열을 흡수하고, 열전달 및 확산을 제어하여 열안정성 인자들의 값이 증가되는 것으로 판단된다.

Keywords

References

  1. M. Zurina, H. Ismail, and C. T. Ratnam, The effect of HVA-2 on properties of irradiated epoxidized natural rubber (ENR-50), ethylene vinyl acetate (EVA), and ENR-50/EVA blend, Polym. Test., 27, 480-490 (2008). https://doi.org/10.1016/j.polymertesting.2008.02.001
  2. N. Polypetchara, P. Suppakul, D. Atong, and C. Pechyen, Blend of polypropylene/poly(lactic acid) for medical packaging application : physicochemical, thermal, mechanical, and barrier properties, Energy Procedia, 56, 201-210 (2014). https://doi.org/10.1016/j.egypro.2014.07.150
  3. S. Poncet, G. Boiteux, J. P. Pascault, H. Sautereau, G. Seytre, J. Rogozinski, and D. Kranbuehl, Monitoring phase separation and reaction advancement in situ in thermoplastic/epoxy blends, Polymer, 40, 6811-6820 (1999). https://doi.org/10.1016/S0032-3861(99)00104-4
  4. S. J. Park, F. L. jin, and J. S. Shin, Physicochemical and mechanical interfacial properties of trifluorometryl groups containing epoxy resin cured with amine, Mater. Sci. Eng. A, 390, 240-245 (2005). https://doi.org/10.1016/j.msea.2004.08.022
  5. F. Mustata, N. Tudorachi, and I. Bicu, Thermosetting resins obtained via sequential photo and thermal crosslinking of epoxy resins. Curing kinetics, thermal properties and morphology, Composites : Part B, 55, 470-478 (2013). https://doi.org/10.1016/j.compositesb.2013.07.023
  6. F. L. Jin and S. J. Park, Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer, Mater. Sci. Eng. A, 478, 402-405 (2008). https://doi.org/10.1016/j.msea.2007.05.053
  7. G. C. Huang and J. K. Lee, Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System, Polymer(Korea), 35, 196-202 (2011).
  8. S. J. Park, H. Y. Lee, M. J. Han, and S. H. Hong, Studies on Cure Behavior and Thermal Stability of DGEBA/PMR-15 Blend System, J. Kor. Ind. Eng. Chem., 14, 176-181 (2003).
  9. S. J. Park, M. K. Seo, and J. R. Lee, Cure Kinetics, Thermal Stabilities and Rheological Properties of Epoxy/Phenol Resin Blend System Initiated by Cationic Thermal Latent Catalyst, Korea-aust. Rheol. J., 11, 135-142 (1999).
  10. S. J. Park, J. S. Jin, J. R. Lee, and P. K. Pak, Studies on Cure Behavior and Thermal Stability of Epoxy/Polyurethane Blend System, Text. Sci. Eng., 36, 664-672 (1999).
  11. S. H. Park, T. V. Phuong, H. W. Song, K. N. Park, B. M. Kim, and Y. S. Choe, Mechanical Properties and Morphology of Epoxy/Polyamide/DDS/2E4MZ-CNS Reactive Blends, J. Kor. Ind. Eng. Chem., 19, 471-476 (2008).
  12. G. Tripathi and D. Srivastava, Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphinol-A (DGEBA) epoxy resin, Mater. Sci. Eng. A, 443, 262-269 (2007). https://doi.org/10.1016/j.msea.2006.09.031
  13. G. Levita, A. Marchetti, and E. Butta, Influence of the temperature of cure on the mechanical properties of ATBN/epoxy blends, Polymer, 26, 1110-1116 (1985). https://doi.org/10.1016/0032-3861(85)90238-1
  14. P. Huang, S. Zheng, J. Huang, and Q. Guo, Miscibility and mechanical properties of epoxy resin/polysulfone blends, Polymer, 38, 5565-5571 (1997). https://doi.org/10.1016/S0032-3861(97)00104-3
  15. M. Kalaee, S. Akhlaghi, A. Nouri, S. Mazinani, M. Mortezaei, M. Afshari, D. Mostafanezhad, A. Allahbakhsh, H. A. Dehaghi, A. Amirsadri, and D. P. Gohari, Effect of nano-sized calcium carbonate on cure kinetics and properties of polyester/epoxy blend powder coatings, Prog. Org. Coat., 71, 173-180 (2011). https://doi.org/10.1016/j.porgcoat.2011.02.006
  16. H. C. Kim, Study on the Compatibility of Brominated Epoxy Resin with Nylon 6 and the Characterization of the Blends, J. Korean Soc. Dyers & Finishers, 22, 155-162 (2010).
  17. K. S. Jeon, R. Nirmala, R. Navamathavan, and H. Y. Kim, Mechanical behavior of electrospun nylon 66 fibers reinforced with pristine and treated multi-walled carbon nanotube fillers, Ceram. Int., 39, 8199-8206 (2013). https://doi.org/10.1016/j.ceramint.2013.04.003
  18. M. Fernandez de Velasco-Ruiz, I. Quijada-Garrido, R. Benavente, and J. M. Barrales-Rienda, Miscibility studies of erucamide (13-cis-docosenamide)/poly(laurolactam) (nylon12) (PA-12) blends, Polymer, 41, 5819-5828 (2000). https://doi.org/10.1016/S0032-3861(99)00769-7
  19. L. Gendre, J. Njuguna, H. Abhyankar, and V. Ermini, Mechanical and impact performance of three-phase polyamide6 nanocomposites, Mater. Des., 66, 486-491 (2015). https://doi.org/10.1016/j.matdes.2014.08.005
  20. P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-amide/imide-based additives, J. Reinf. Plast. Compos., 31, 189-202 (2012). https://doi.org/10.1177/0731684411434150
  21. J. An, J. Ge, and Y. Liu, Special Effect of Epoxy Resin E-44 on compatibility and Mechanical Properties of Poly(butylene terephthalate)/Polyamide-6 Blends, J. Appl. Polym. Sci., 60, 1803-1810 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960613)60:11<1803::AID-APP3>3.0.CO;2-P
  22. S. C. Kim, J. K. Kim, S. H. Lim, W. H. Jo, and C. R. Choe, Effects of Mixing Temperatures on the Morphology and Toughness of Epoxy/Polyamide Blends, J. Appl. Polym. Sci., 72, 1055-1063 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990523)72:8<1055::AID-APP10>3.0.CO;2-8
  23. C. Zhao, P. Zhang, L. Yi, F. Xu, X. Wang, and J. Yong, Study on the non-isothermal crystallization kinetics of novel polyamide 6/silica nanocomposites containing epoxy resins, Polym. Test., 27, 412-419 (2008). https://doi.org/10.1016/j.polymertesting.2008.01.001
  24. K. E. Barrett, Determination of rates of Thermal Decomposition of Polymerization Initiators with a Differential Scanning Calorimeter, J. Appl. Polym. Sci., 11, 1617-1626 (1967). https://doi.org/10.1002/app.1967.070110901
  25. T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 29, 1881-1886 (1965).
  26. H. E. Kissinger, Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis, J. Res. Natl. Bur. Stds., 57, 217-221 (1956). https://doi.org/10.6028/jres.057.026
  27. Z. Zhong and Q. Guo, Miscibility and cure kineticcs of nylon/epoxy resin reactive blends, Polymer, 39, 3451-3458 (1998). https://doi.org/10.1016/S0032-3861(97)10237-3
  28. C. D. Doyle, Estimating Thermal Stability of Experimental Polymers by Empirical Thermogravimetric Analysis, Anal. Chem., 33, 77-79 (1961). https://doi.org/10.1021/ac60169a022
  29. S. J. Park, H. C. Kim, and P. K. Pak, Studies on the Thermal Stability and Electrical Properties of Conductive Acetylene Black/High Density Polyethylene Composites, Text. Sci. Eng., 38, 14-20 (2001).