DOI QR코드

DOI QR Code

APPLICATION OF CEPHEIDS TO DISTANCE SCALE: EXTENDING TO ULTRA-LONG PERIOD CEPHEIDS

  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

Classical Cepheids (hereafter Cepheids) belong to a class of important variable stars that can be used to determine distances to nearby galaxies via the famous period-luminosity (PL) relations, i.e. the Leavitt Law. In turn, these distances can then be used to calibrate a host of secondary distance indicators located well within the Hubble flow, and ultimately determine the Hubble constant in a manner independent of the Cosmic Microwave Background (CMB) measurements. Some recent progress in determining the Hubble constant to within ~ 3% level via the Cepheid-based distance scale ladder (the SH0ES and the Carnegie Hubble Program) were first summarized in this Proceeding, followed by a brief discussion on the prospect of using ultra-long period Cepheids (ULPC) in future distance scale work. ULPC are those Cepheids with periods longer than 80 days, which seem to follow a different PL relation than their shorter period Cepheids. It has been suggested that ULPC can be used to determine the Hubble constant in "one-step". However, based on the two ULPCs found in M31, it was found that the large dispersion in derived distance moduli leads to a less accurate distance modulus to M31 compared to the classical Cepheids. This finding might raise an alert regarding the use of ULPCs in future distance scale work.

Keywords

References

  1. Benedict, G. F., McArthur, B. E., & Feast, M. W., et al., 2007, Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations, AJ, 133, 1810 https://doi.org/10.1086/511980
  2. Bird, J. C., Stanek, K. Z., & Prieto, J. L., 2009, Using Ultra Long Period Cepheids to Extend the Cosmic Distance Ladder to 100 Mpc and Beyond, ApJ, 695, 874 https://doi.org/10.1088/0004-637X/695/2/874
  3. de Grijs, R., 2011, An Introduction to Distance Measurement in Astronomy, John Wiley & Sons Ltd, 1st-edition
  4. de Grijs, R. & Bono, G., 2014, Clustering of Local Group Distances: Publication Bias or Correlated Measurements? II. M31 and Beyond, AJ, 148, 17 https://doi.org/10.1088/0004-6256/148/1/17
  5. Efstathiou, G. & Bond, J. R., 1999, Cosmic Confusion: Degeneracies Among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies, MNRAS, 304, 75 https://doi.org/10.1046/j.1365-8711.1999.02274.x
  6. Fiorentino, G., Clementini, G., & Marconi, M., et al., 2012, Ultra Long Period Cepheids: a Primary Standard Candle out to the Hubble Flow, Ap&SS, 341, 143 https://doi.org/10.1007/s10509-012-1043-4
  7. Freedman, W. L., 1988, New Cepheid Distances to Nearby Galaxies Based on BVRI CCD Photometry. I - IC 1613, ApJ, 326, 691 https://doi.org/10.1086/166128
  8. Freedman, W. L., Madore, B. F., & Gibson, B. K., et al., 2001, Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, ApJ, 553, 47 https://doi.org/10.1086/320638
  9. Freedman, W. L., Madore, B. F., Rigby, J., Persson, S. E., & Sturch, L., 2008, The Cepheid Period-Luminosity Relation at Mid-Infrared Wavelengths. I. First-Epoch LMC Data, ApJ, 679, 71 https://doi.org/10.1086/586701
  10. Freedman, W. L. & Madore, B. F., 2010, The Hubble Constant, ARA&A, 48, 673 https://doi.org/10.1146/annurev-astro-082708-101829
  11. Freedman, W. L., Madore, B. F., & Scowcroft, V., et al., 2011, The Carnegie Hubble Program, AJ, 142, 192 https://doi.org/10.1088/0004-6256/142/6/192
  12. Freedman, W. L., Madore, B. F., & Scowcroft, V., et al., 2012, Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant, ApJ, 758, 24 https://doi.org/10.1088/0004-637X/758/1/24
  13. Gao, Q. & Gong, Y., 2014, The Tension on the Cosmological Parameters from Different Observational Data, Classical and Quantum Gravity, 31, 105007 https://doi.org/10.1088/0264-9381/31/10/105007
  14. Hu, W., 2005, Dark Energy Probes in Light of the CMB, ASP Conference Series, 339, 215
  15. Hubble, E., 1929, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae, Contributions from the Mount Wilson Observatory, 3, 23
  16. Hubble, E., & Humason, M. L., 1931, The Velocity-Distance Relation among Extra-Galactic Nebulae, ApJ, 74, 43 https://doi.org/10.1086/143323
  17. Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L., 2008, Toward a New Geometric Distance to the Active Galaxy NGC 4258. II. Centripetal Accelerations and Investigation of Spiral Structure, ApJ, 672, 800 https://doi.org/10.1086/523637
  18. Jackson, N., 2007, The Hubble Constant, Living Reviews in Relativity, 10, 4 https://doi.org/10.12942/lrr-2007-4
  19. Laher, R. R., Surace, J., & Grillmair, C. J., et al., 2014, IPAC Image Processing and Data Archiving for the Palomar Transient Factory, PASP, 126, 674
  20. Lee, C. -H., Ngeow, C. -C., Yang T. -C., & Ip, W. -H., et al., 2013, Using the Palomar Transient Factory to Search for Ultra-Long-Period Cepheid Candidates in M31, Proc. of the 2013 IEEE International Conference on Space Science and Communication (IconSpace2013), 1
  21. Li, Z.,Wu, P., & Yu, H., et al., 2014, A Possible Resolution of Tension Between Planck and Type Ia Supernova Observations, Science China Physics, Mechanics and Astronomy, 57, 381 https://doi.org/10.1007/s11433-013-5373-1
  22. Madore, B. F., & Freedman, W. L., 2005, Nonuniform Sampling and Periodic Signal Detection, ApJ, 630, 1054 https://doi.org/10.1086/432108
  23. Madore, B. F., Freedman, W. L., & Rigby, J., et al., 2009, The Cepheid Period-Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths. II. Second-Epoch LMC Data, ApJ, 695, 988 https://doi.org/10.1088/0004-637X/695/2/988
  24. Majaess, D., Turner, D. G., & Gieren, W., 2013, On the Form of the Spitzer Leavitt Law and Its Dependence on Metallicity, ApJ, 772, 130 https://doi.org/10.1088/0004-637X/772/2/130
  25. Marengo, M., Evans, N. R., & Barmby, P., et al., 2010, Galactic Cepheids with Spitzer. I. Leavitt Law and Colors, ApJ, 709, 120 https://doi.org/10.1088/0004-637X/709/1/120
  26. Monson, A. J., Freedman, W. L.,& Madore, B. F., et al., 2012, The Carnegie Hubble Program: The Leavitt Law at 3.6 and 4.5 um in the Milky Way, ApJ, 759, 146 https://doi.org/10.1088/0004-637X/759/2/146
  27. Ngeow, C. & Kanbur, S. M., 2008, The Period-Luminosity Relation for the Large Magellanic Cloud Cepheids Derived from Spitzer Archival Data, ApJ, 679, 76 https://doi.org/10.1086/586704
  28. Ngeow, C. -C., Kanbur, S. M., Neilson, H. R., Nanthakumar, A., & Buonaccorsi, J., 2009, Period-Luminosity Relations Derived From the OGLE-III Fundamental Mode Cepheids, ApJ, 693, 691 https://doi.org/10.1088/0004-637X/693/1/691
  29. Ngeow, C. -C. & Kanbur, S. M., 2010, The Mid-infrared Period-Luminosity Relations for the Small Magellanic Cloud Cepheids Derived from Spitzer Archival Data, ApJ, 720, 626 https://doi.org/10.1088/0004-637X/720/1/626
  30. Ngeow, C. -C., Marconi, M., Musella, I., Cignoni, M., & Kanbur, S. M., 2012, Theoretical Cepheid Period-Luminosity and Period-Color Relations in Spitzer IRAC Bands, ApJ, 745, 104 https://doi.org/10.1088/0004-637X/745/2/104
  31. Planck Collaboration XIV, 2014, Planck 2013 Results. XVI. Cosmological Parameters, A&A, 571, A16 https://doi.org/10.1051/0004-6361/201321591
  32. Riess, A. G., Macri, L., & Li, W., et al., 2009a, Cepheid Calibrations of Modern Type Ia Supernovae: Implications for the Hubble Constant, ApJS, 183, 109 https://doi.org/10.1088/0067-0049/183/1/109
  33. Riess, A. G., Macri, L., & Casertano, S., et al., 2009b, A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder, ApJ, 699, 539 https://doi.org/10.1088/0004-637X/699/1/539
  34. Riess, A. G., Macri, L., & Casertano, S., et al., 2011, A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, ApJ, 730, 119 https://doi.org/10.1088/0004-637X/730/2/119
  35. Scowcroft, V., Freedman, W. L., & Madore, B. F., et al., 2011, The Carnegie Hubble Program: The Leavitt Law at 3.6${\mu}m$ and 4.5${\mu}m$ in the Large Magellanic Cloud, ApJ, 743, 76 https://doi.org/10.1088/0004-637X/743/1/76
  36. Sorce, J. G., Courtois, H. M., & Tully, R. B., 2012, The Mid-infrared Tully-Fisher Relation: Spitzer Surface Photometry, AJ, 144, 133 https://doi.org/10.1088/0004-6256/144/5/133
  37. Tammann, G. A., Sandage, A., & Reindl, B., 2008, The Expansion Field: the Value of $H_0$, A&ARv, 15, 289 https://doi.org/10.1007/s00159-008-0012-y
  38. Verde, L., Jimenez, R., & Feeney, S., 2013, The Importance of Local Measurements for Cosmology, PDU, 2, 65
  39. Verde, L., Protopapas, P., & Jimenez, R., 2013, Planck and the Local Universe: Quantifying the Tension, PDU, 2, 166
  40. Weinberg, D. H., Mortonson, M. J., & Eisenstein, D. J., et al., 2013, Observational Probes of Cosmic Acceleration, PhR, 530, 87
  41. Wyman, M., Rudd, D. H., Vanderveld, R. A., & Hu, W., 2014, Neutrinos Help Reconcile Planck Measurements with the Local Universe, PhRvL, 112, 051302