References
- Benedict, G. F., McArthur, B. E., & Feast, M. W., et al., 2007, Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations, AJ, 133, 1810 https://doi.org/10.1086/511980
- Bird, J. C., Stanek, K. Z., & Prieto, J. L., 2009, Using Ultra Long Period Cepheids to Extend the Cosmic Distance Ladder to 100 Mpc and Beyond, ApJ, 695, 874 https://doi.org/10.1088/0004-637X/695/2/874
- de Grijs, R., 2011, An Introduction to Distance Measurement in Astronomy, John Wiley & Sons Ltd, 1st-edition
- de Grijs, R. & Bono, G., 2014, Clustering of Local Group Distances: Publication Bias or Correlated Measurements? II. M31 and Beyond, AJ, 148, 17 https://doi.org/10.1088/0004-6256/148/1/17
- Efstathiou, G. & Bond, J. R., 1999, Cosmic Confusion: Degeneracies Among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies, MNRAS, 304, 75 https://doi.org/10.1046/j.1365-8711.1999.02274.x
- Fiorentino, G., Clementini, G., & Marconi, M., et al., 2012, Ultra Long Period Cepheids: a Primary Standard Candle out to the Hubble Flow, Ap&SS, 341, 143 https://doi.org/10.1007/s10509-012-1043-4
- Freedman, W. L., 1988, New Cepheid Distances to Nearby Galaxies Based on BVRI CCD Photometry. I - IC 1613, ApJ, 326, 691 https://doi.org/10.1086/166128
- Freedman, W. L., Madore, B. F., & Gibson, B. K., et al., 2001, Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, ApJ, 553, 47 https://doi.org/10.1086/320638
- Freedman, W. L., Madore, B. F., Rigby, J., Persson, S. E., & Sturch, L., 2008, The Cepheid Period-Luminosity Relation at Mid-Infrared Wavelengths. I. First-Epoch LMC Data, ApJ, 679, 71 https://doi.org/10.1086/586701
- Freedman, W. L. & Madore, B. F., 2010, The Hubble Constant, ARA&A, 48, 673 https://doi.org/10.1146/annurev-astro-082708-101829
- Freedman, W. L., Madore, B. F., & Scowcroft, V., et al., 2011, The Carnegie Hubble Program, AJ, 142, 192 https://doi.org/10.1088/0004-6256/142/6/192
- Freedman, W. L., Madore, B. F., & Scowcroft, V., et al., 2012, Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant, ApJ, 758, 24 https://doi.org/10.1088/0004-637X/758/1/24
- Gao, Q. & Gong, Y., 2014, The Tension on the Cosmological Parameters from Different Observational Data, Classical and Quantum Gravity, 31, 105007 https://doi.org/10.1088/0264-9381/31/10/105007
- Hu, W., 2005, Dark Energy Probes in Light of the CMB, ASP Conference Series, 339, 215
- Hubble, E., 1929, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae, Contributions from the Mount Wilson Observatory, 3, 23
- Hubble, E., & Humason, M. L., 1931, The Velocity-Distance Relation among Extra-Galactic Nebulae, ApJ, 74, 43 https://doi.org/10.1086/143323
- Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L., 2008, Toward a New Geometric Distance to the Active Galaxy NGC 4258. II. Centripetal Accelerations and Investigation of Spiral Structure, ApJ, 672, 800 https://doi.org/10.1086/523637
- Jackson, N., 2007, The Hubble Constant, Living Reviews in Relativity, 10, 4 https://doi.org/10.12942/lrr-2007-4
- Laher, R. R., Surace, J., & Grillmair, C. J., et al., 2014, IPAC Image Processing and Data Archiving for the Palomar Transient Factory, PASP, 126, 674
- Lee, C. -H., Ngeow, C. -C., Yang T. -C., & Ip, W. -H., et al., 2013, Using the Palomar Transient Factory to Search for Ultra-Long-Period Cepheid Candidates in M31, Proc. of the 2013 IEEE International Conference on Space Science and Communication (IconSpace2013), 1
- Li, Z.,Wu, P., & Yu, H., et al., 2014, A Possible Resolution of Tension Between Planck and Type Ia Supernova Observations, Science China Physics, Mechanics and Astronomy, 57, 381 https://doi.org/10.1007/s11433-013-5373-1
- Madore, B. F., & Freedman, W. L., 2005, Nonuniform Sampling and Periodic Signal Detection, ApJ, 630, 1054 https://doi.org/10.1086/432108
- Madore, B. F., Freedman, W. L., & Rigby, J., et al., 2009, The Cepheid Period-Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths. II. Second-Epoch LMC Data, ApJ, 695, 988 https://doi.org/10.1088/0004-637X/695/2/988
- Majaess, D., Turner, D. G., & Gieren, W., 2013, On the Form of the Spitzer Leavitt Law and Its Dependence on Metallicity, ApJ, 772, 130 https://doi.org/10.1088/0004-637X/772/2/130
- Marengo, M., Evans, N. R., & Barmby, P., et al., 2010, Galactic Cepheids with Spitzer. I. Leavitt Law and Colors, ApJ, 709, 120 https://doi.org/10.1088/0004-637X/709/1/120
- Monson, A. J., Freedman, W. L.,& Madore, B. F., et al., 2012, The Carnegie Hubble Program: The Leavitt Law at 3.6 and 4.5 um in the Milky Way, ApJ, 759, 146 https://doi.org/10.1088/0004-637X/759/2/146
- Ngeow, C. & Kanbur, S. M., 2008, The Period-Luminosity Relation for the Large Magellanic Cloud Cepheids Derived from Spitzer Archival Data, ApJ, 679, 76 https://doi.org/10.1086/586704
- Ngeow, C. -C., Kanbur, S. M., Neilson, H. R., Nanthakumar, A., & Buonaccorsi, J., 2009, Period-Luminosity Relations Derived From the OGLE-III Fundamental Mode Cepheids, ApJ, 693, 691 https://doi.org/10.1088/0004-637X/693/1/691
- Ngeow, C. -C. & Kanbur, S. M., 2010, The Mid-infrared Period-Luminosity Relations for the Small Magellanic Cloud Cepheids Derived from Spitzer Archival Data, ApJ, 720, 626 https://doi.org/10.1088/0004-637X/720/1/626
- Ngeow, C. -C., Marconi, M., Musella, I., Cignoni, M., & Kanbur, S. M., 2012, Theoretical Cepheid Period-Luminosity and Period-Color Relations in Spitzer IRAC Bands, ApJ, 745, 104 https://doi.org/10.1088/0004-637X/745/2/104
- Planck Collaboration XIV, 2014, Planck 2013 Results. XVI. Cosmological Parameters, A&A, 571, A16 https://doi.org/10.1051/0004-6361/201321591
- Riess, A. G., Macri, L., & Li, W., et al., 2009a, Cepheid Calibrations of Modern Type Ia Supernovae: Implications for the Hubble Constant, ApJS, 183, 109 https://doi.org/10.1088/0067-0049/183/1/109
- Riess, A. G., Macri, L., & Casertano, S., et al., 2009b, A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder, ApJ, 699, 539 https://doi.org/10.1088/0004-637X/699/1/539
- Riess, A. G., Macri, L., & Casertano, S., et al., 2011, A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, ApJ, 730, 119 https://doi.org/10.1088/0004-637X/730/2/119
-
Scowcroft, V., Freedman, W. L., & Madore, B. F., et al., 2011, The Carnegie Hubble Program: The Leavitt Law at 3.6
${\mu}m$ and 4.5${\mu}m$ in the Large Magellanic Cloud, ApJ, 743, 76 https://doi.org/10.1088/0004-637X/743/1/76 - Sorce, J. G., Courtois, H. M., & Tully, R. B., 2012, The Mid-infrared Tully-Fisher Relation: Spitzer Surface Photometry, AJ, 144, 133 https://doi.org/10.1088/0004-6256/144/5/133
-
Tammann, G. A., Sandage, A., & Reindl, B., 2008, The Expansion Field: the Value of
$H_0$ , A&ARv, 15, 289 https://doi.org/10.1007/s00159-008-0012-y - Verde, L., Jimenez, R., & Feeney, S., 2013, The Importance of Local Measurements for Cosmology, PDU, 2, 65
- Verde, L., Protopapas, P., & Jimenez, R., 2013, Planck and the Local Universe: Quantifying the Tension, PDU, 2, 166
- Weinberg, D. H., Mortonson, M. J., & Eisenstein, D. J., et al., 2013, Observational Probes of Cosmic Acceleration, PhR, 530, 87
- Wyman, M., Rudd, D. H., Vanderveld, R. A., & Hu, W., 2014, Neutrinos Help Reconcile Planck Measurements with the Local Universe, PhRvL, 112, 051302