DOI QR코드

DOI QR Code

Identification and Clinical Implications of Novel MYO15A Mutations in a Non-consanguineous Korean Family by Targeted Exome Sequencing

  • Chang, Mun Young (Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine) ;
  • Kim, Ah Reum (Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine) ;
  • Kim, Nayoung K.D. (Samsung Genome Institute, Samsung Medical Center) ;
  • Lee, Chung (Samsung Genome Institute, Samsung Medical Center) ;
  • Lee, Kyoung Yeul (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeon, Woo-Sung (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Koo, Ja-Won (Department of Otorhinolaryngology, Seoul National University Bundang Hospital) ;
  • Oh, Seung Ha (Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine) ;
  • Park, Woong-Yang (Samsung Genome Institute, Samsung Medical Center) ;
  • Kim, Dongsup (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Byung Yoon (Department of Otorhinolaryngology, Seoul National University Bundang Hospital)
  • Received : 2015.03.24
  • Accepted : 2015.06.11
  • Published : 2015.09.30

Abstract

Mutations of MYO15A are generally known to cause severe to profound hearing loss throughout all frequencies. Here, we found two novel MYO15A mutations, c.3871C>T (p.L1291F) and c.5835T>G (p.Y1945X) in an affected individual carrying congenital profound sensorineural hearing loss (SNHL) through targeted resequencing of 134 known deafness genes. The variant, p.L1291F and p.Y1945X, resided in the myosin motor and IQ2 domains, respectively. The p.L1291F variant was predicted to affect the structure of the actin-binding site from three-dimensional protein modeling, thereby interfering with the correct interaction between actin and myosin. From the literature analysis, mutations in the N-terminal domain were more frequently associated with residual hearing at low frequencies than mutations in the other regions of this gene. Therefore we suggest a hypothetical genotype-phenotype correlation whereby MYO15A mutations that affect domains other than the N-terminal domain, lead to profound SNHL throughout all frequencies and mutations that affect the N-terminal domain, result in residual hearing at low frequencies. This genotype-phenotype correlation suggests that preservation of residual hearing during auditory rehabilitation like cochlear implantation should be intended for those who carry mutations in the N-terminal domain and that individuals with mutations elsewhere in MYO15A require early cochlear implantation to timely initiate speech development.

Keywords

References

  1. Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R. (2001). GRR: graphical representation of relationship errors. Bioinformatics 17, 742-743. https://doi.org/10.1093/bioinformatics/17.8.742
  2. Bahler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107-113. https://doi.org/10.1016/S0014-5793(01)03239-2
  3. Bashir, R., Fatima, A., and Naz, S. (2012). Prioritized sequencing of the second exon of MYO15A reveals a new mutation segregating in a Pakistani family with moderate to severe hearing loss. Eur. J. Med. Genet. 55, 99-102. https://doi.org/10.1016/j.ejmg.2011.12.003
  4. Belguith, H., Aifa-Hmani, M., Dhouib, H., Said, M.B., Mosrati, M.A., Lahmar, I., Moalla, J., Charfeddine, I., Driss, N., Arab, S.B., et al. (2009). Screening of the DFNB3 locus: identification of three novel mutations of MYO15A associated with hearing loss and further suggestion for two distinctive genes on this locus. Genet. Test. Mol. Biomarkers 13, 147-151. https://doi.org/10.1089/gtmb.2008.0077
  5. Belyantseva, I.A., Boger, E.T., and Friedman, T.B. (2003). Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc. Natl. Acad. Sci. USA 100, 13958-13963. https://doi.org/10.1073/pnas.2334417100
  6. Belyantseva, I.A., Boger, E.T., Naz, S., Frolenkov, G.I., Sellers, J.R., Ahmed, Z.M., Griffith, A.J., and Friedman, T.B. (2005). Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell. Biol. 7, 148-156. https://doi.org/10.1038/ncb1219
  7. Berg, J.S., Powell, B.C., and Cheney, R.E. (2001). A millennial myosin census. Mol. Biol. Cell. 12, 780-794. https://doi.org/10.1091/mbc.12.4.780
  8. Besnard, T., Garcia-Garcia, G., Baux, D., Vache, C., Faugere, V., Larrieu, L., Leonard, S., Millan, J.M., Malcolm, S., Claustres, M., et al. (2014). Experience of targeted Usher exome sequencing as a clinical test. Mol. Genet. Genomic. Med. 2, 30-43. https://doi.org/10.1002/mgg3.25
  9. Bird, J.E., Takagi, Y., Billington, N., Strub, M.P., Sellers, J.R., and Friedman, T.B. (2014). Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking. Proc. Natl. Acad. Sci. USA 111, 12390-12395. https://doi.org/10.1073/pnas.1409459111
  10. Brownstein, Z., Friedman, L.M., Shahin, H., Oron-Karni, V., Kol, N., Abu Rayyan, A., Parzefall, T., Lev, D., Shalev, S., Frydman, M., et al. (2011). Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol. 12, R89. https://doi.org/10.1186/gb-2011-12-9-r89
  11. Cengiz, F.B., Duman, D., Sirmaci, A., Tokgoz-Yilmaz, S., Erbek, S., Ozturkmen-Akay, H., Incesulu, A., Edwards, Y.J., Ozdag, H., Liu, X.Z., et al. (2010). Recurrent and private MYO15A mutations are associated with deafness in the Turkish population. Genet. Test. Mol. Biomarkers 14, 543-550. https://doi.org/10.1089/gtmb.2010.0039
  12. Choi, B.Y., Park, G., Gim, J., Kim, A.R., Kim, B.J., Kim, H.S., Park, J.H., Park, T., Oh, S.H., Han, K.H., et al. (2013). Diagnostic application of targeted resequencing for familial nonsyndromic hearing loss. PLoS One 8, e68692. https://doi.org/10.1371/journal.pone.0068692
  13. Cope, M.J., Whisstock, J., Rayment, I., and Kendrick-Jones, J. (1996). Conservation within the myosin motor domain: implications for structure and function. Structure 4, 969-987. https://doi.org/10.1016/S0969-2126(96)00103-7
  14. Diaz-Horta, O., Duman, D., Foster, J., 2nd, Sirmaci, A., Gonzalez, M., Mahdieh, N., Fotouhi, N., Bonyadi, M., Cengiz, F.B., Menendez, I., et al. (2012). Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS One 7, e50628. https://doi.org/10.1371/journal.pone.0050628
  15. Donaudy, F., Ferrara, A., Esposito, L., Hertzano, R., Ben-David, O., Bell, R.E., Melchionda, S., Zelante, L., Avraham, K.B., and Gasparini, P. (2003). Multiple mutations of MYO1A, a cochlearexpressed gene, in sensorineural hearing loss. Am. J. Hum. Genet. 72, 1571-1577. https://doi.org/10.1086/375654
  16. Donaudy, F., Snoeckx, R., Pfister, M., Zenner, H.P., Blin, N., Di Stazio, M., Ferrara, A., Lanzara, C., Ficarella, R., Declau, F., et al. (2004). Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am. J. Hum. Genet. 74, 770-776. https://doi.org/10.1086/383285
  17. Duman, D., Sirmaci, A., Cengiz, F.B., Ozdag, H., and Tekin, M. (2011). Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey. Genet. Test. Mol. Biomarkers 15, 29-33. https://doi.org/10.1089/gtmb.2010.0120
  18. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.6.
  19. Fattahi, Z., Shearer, A.E., Babanejad, M., Bazazzadegan, N., Almadani, S.N., Nikzat, N., Jalalvand, K., Arzhangi, S., Esteghamat, F., Abtahi, R., et al. (2012). Screening for MYO15A gene mutations in autosomal recessive nonsyndromic, GJB2 negative Iranian deaf population. Am. J. Med. Genet. A 158a, 1857-1864. https://doi.org/10.1002/ajmg.a.34411
  20. Friedman, T.B., Liang, Y., Weber, J.L., Hinnant, J.T., Barber, T.D., Winata, S., Arhya, I.N., and Asher, J.H., Jr. (1995). A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat. Genet. 9, 86-91. https://doi.org/10.1038/ng0195-86
  21. Friedman, T.B., Sellers, J.R., and Avraham, K.B. (1999). Unconventional myosins and the genetics of hearing loss. Am. J. Med. Genet. 89, 147-157. https://doi.org/10.1002/(SICI)1096-8628(19990924)89:3<147::AID-AJMG5>3.0.CO;2-6
  22. Friedman, T.B., Hinnant, J.T., Ghosh, M., Boger, E.T., Riazuddin, S., Lupski, J.R., Potocki, L., and Wilcox, E.R. (2002). DFNB3, spectrum of MYO15A recessive mutant alleles and an emerging genotype-phenotype correlation. Adv. Otorhinolaryngol. 61, 124-130.
  23. Gao, X., Zhu, Q.Y., Song, Y.S., Wang, G.J., Yuan, Y.Y., Xin, F., Huang, S.S., Kang, D.Y., Han, M.Y., Guan, L.P., et al. (2013). Novel compound heterozygous mutations in the MYO15A gene in autosomal recessive hearing loss identified by whole-exome sequencing. J. Transl. Med. 11, 284. https://doi.org/10.1186/1479-5876-11-284
  24. Garcia-Alvarez, B., de Pereda, J.M., Calderwood, D.A., Ulmer, T.S., Critchley, D., Campbell, I.D., Ginsberg, M.H., and Liddington, R.C. (2003). Structural determinants of integrin recognition by talin. Mol. Cell. 11, 49-58. https://doi.org/10.1016/S1097-2765(02)00823-7
  25. Hilgert, N., Smith, R.J., and Van Camp, G. (2009). Function and expression pattern of nonsyndromic deafness genes. Curr. Mol. Med. 9, 546-564. https://doi.org/10.2174/156652409788488775
  26. Kalay, E., Uzumcu, A., Krieger, E., Caylan, R., Uyguner, O., Ulubil-Emiroglu, M., Erdol, H., Kayserili, H., Hafiz, G., Baserer, N., et al. (2007). MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation. Am. J. Med. Genet. A 143a, 2382-2389. https://doi.org/10.1002/ajmg.a.31937
  27. Kim, H.Y., Rhim, T., Ahnm M.H., Yoon, P.O., Kim, S.H., Lee, S.H., and Park, C.S. (2008). The fast skeletal muscle myosin light chain is differentially expressed in smooth muscle cells of OVAchallenged mouse trachea. Mol. Cells 25, 78-85.
  28. Krendel, M., and Mooseker, M.S. (2005). Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20, 239-251. https://doi.org/10.1152/physiol.00014.2005
  29. Lalwani, A.K., Goldstein, J.A., Kelley, M.J., Luxford, W., Castelein, C.M., and Mhatre, A.N. (2000). Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am. J. Hum. Genet. 67, 1121-1128. https://doi.org/10.1086/321212
  30. Liang, Y., Wang, A., Probst, F.J., Arhya, I.N., Barber, T.D., Chen, K.S., Deshmukh, D., Dolan, D.F., Hinnant, J.T., Carter, L.E., et al. (1998). Genetic mapping refines DFNB3 to 17p11.2, suggests multiple alleles of DFNB3, and supports homology to the mouse model shaker-2. Am. J. Hum. Genet. 62, 904-915. https://doi.org/10.1086/301786
  31. Liang, Y., Wang, A., Belyantseva, I.A., Anderson, D.W., Probst, F.J., Barber, T.D., Miller, W., Touchman, J.W., Jin, L., Sullivan, S.L., et al. (1999). Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61, 243-258. https://doi.org/10.1006/geno.1999.5976
  32. Liburd, N., Ghosh, M., Riazuddin, S., Naz, S., Khan, S., Ahmed, Z., Riazuddin, S., Liang, Y., Menon, P.S., Smith, T., et al. (2001). Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a patient with Smith-Magenis syndrome. Hum. Genet. 109, 535-541. https://doi.org/10.1007/s004390100604
  33. Mooseker, M.S., and Cheney, R.E. (1995). Unconventional myosins. Annu. Rev. Cell. Dev. Biol. 11, 633-675. https://doi.org/10.1146/annurev.cb.11.110195.003221
  34. Nal, N., Ahmed, Z.M., Erkal, E., Alper, O.M., Luleci, G., Dinc, O., Waryah, A.M., Ain, Q., Tasneem, S., Husnain, T., et al. (2007). Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing. Hum. Mutat. 28, 1014-1019. https://doi.org/10.1002/humu.20556
  35. Park, J.H., Kim, N.K.D., Kim, A.R., Rhee, J., Oh, S.H., Koo, J.W., Nam, J.Y., Park, W.Y., and Choi, B.Y. (2014). Comprehensive exploration of molecular genetic etiology for cochlear implantees with severe to profound hearing loss and its implication. orphanet. J. Rare Dis. 9, 167 https://doi.org/10.1186/s13023-014-0167-8
  36. Probst, F.J., Fridell, R.A., Raphael, Y., Saunders, T.L., Wang, A., Liang, Y., Morell, R.J., Touchman, J.W., Lyons, R.H., Noben-Trauth, K., et al. (1998). Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444-1447. https://doi.org/10.1126/science.280.5368.1444
  37. Shearer, A.E., Hildebrand, M.S., Webster, J.A., Kahrizi, K., Meyer, N.C., Jalalvand, K., Arzhanginy, S., Kimberling, W.J., Stephan, D., Bahlo, M., et al. (2009). Mutations in the first MyTH4 domain of MYO15A are a common cause of DFNB3 hearing loss. Laryngoscope 119, 727-733. https://doi.org/10.1002/lary.20116
  38. Tilney, L.G., and Tilney, M.S. (1986). Functional organization of the cytoskeleton. Hear. Res. 22, 55-77. https://doi.org/10.1016/0378-5955(86)90077-8
  39. Tilney, L.G., Tilney, M.S., and DeRosier, D.J. (1992). Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell. Biol. 8, 257-274. https://doi.org/10.1146/annurev.cb.08.110192.001353
  40. Walsh, T., Walsh, V., Vreugde, S., Hertzano, R., Shahin, H., Haika, S., Lee, M.K., Kanaan, M., King, M.C., and Avraham, K.B., (2002). From flies' eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc. Natl. Acad. Sci. USA 99, 7518-7523. https://doi.org/10.1073/pnas.102091699
  41. Wang, A., Liang, Y., Fridell, R.A., Probst, F.J., Wilcox, E.R., Touchman, J.W., Morton, C.C., Morell, R.J., Noben-Trauth, K., Camper, S.A., et al. (1998). Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447-1451. https://doi.org/10.1126/science.280.5368.1447
  42. Woo, H.M., Park, H.J., Baek, J.I., Park, M.H., Kim, U.K., Sagong, B., and Koo, S.K. (2013). Whole-exome sequencing identifies MYO15A mutations as a cause of autosomal recessive nonsyndromic hearing loss in Korean families. BMC Med. Genet. 14, 72.
  43. Yang, T., Wei, X., Chai, Y., Li, L., and Wu, H. (2013). Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing. Orphanet. J. Rare Dis. 8, 85. https://doi.org/10.1186/1750-1172-8-85

Cited by

  1. MYO15A splicing mutations in hearing loss: A review literature and report of a novel mutation vol.96, 2017, https://doi.org/10.1016/j.ijporl.2017.03.008
  2. Homozygous mutations in PJVK and MYO15A genes associated with non-syndromic hearing loss in Moroccan families vol.101, 2017, https://doi.org/10.1016/j.ijporl.2017.07.024
  3. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation vol.23, pp.8, 2016, https://doi.org/10.1038/cdd.2016.16
  4. Discovery of CDH23 as a Significant Contributor to Progressive Postlingual Sensorineural Hearing Loss in Koreans vol.11, pp.10, 2016, https://doi.org/10.1371/journal.pone.0165680
  5. Establishment of a Flexible Real-Time Polymerase Chain Reaction-Based Platform for Detecting Prevalent Deafness Mutations Associated with Variable Degree of Sensorineural Hearing Loss in Koreans vol.11, pp.9, 2016, https://doi.org/10.1371/journal.pone.0161756
  6. An update of common autosomal recessive non-syndromic hearing loss genes in Iranian population vol.97, 2017, https://doi.org/10.1016/j.ijporl.2017.04.007
  7. Mutational Spectrum ofMYO15Aand the Molecular Mechanisms of DFNB3 Human Deafness vol.37, pp.10, 2016, https://doi.org/10.1002/humu.23042
  8. Expansion of phenotypic spectrum of MYO15A pathogenic variants to include postlingual onset of progressive partial deafness vol.19, pp.1, 2018, https://doi.org/10.1186/s12881-018-0541-9
  9. Mutations Identified in One Chinese Family with Autosomal Recessive Nonsyndromic Hearing Loss vol.2018, pp.1687-5443, 2018, https://doi.org/10.1155/2018/5898025
  10. Clinical Application of Targeted Deep Sequencing in Solid‐Cancer Patients and Utility for Biomarker‐Selected Clinical Trials vol.22, pp.10, 2015, https://doi.org/10.1634/theoncologist.2017-0020
  11. Identification of a Potential Founder Effect of a Novel PDZD7 Variant Involved in Moderate-to-Severe Sensorineural Hearing Loss in Koreans vol.20, pp.17, 2015, https://doi.org/10.3390/ijms20174174
  12. Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population vol.10, pp.10, 2015, https://doi.org/10.3390/genes10100772
  13. Genotype-phenotype correlation analysis of MYO15A variants in autosomal recessive non-syndromic hearing loss vol.20, pp.None, 2015, https://doi.org/10.1186/s12881-019-0790-2
  14. Cochlear Implantation From the Perspective of Genetic Background vol.303, pp.3, 2020, https://doi.org/10.1002/ar.24360
  15. Post-lingual non-syndromic hearing loss phenotype: a polygenic case with 2 biallelic mutations in MYO15A and MITF vol.21, pp.None, 2015, https://doi.org/10.1186/s12881-019-0942-4
  16. A synonymous variant in MYO15A enriched in the Ashkenazi Jewish population causes autosomal recessive hearing loss due to abnormal splicing vol.29, pp.6, 2015, https://doi.org/10.1038/s41431-020-00790-w