References
- Amanov A, Cho I S, Pyoun Y S, Lee C S, and Park I G (2012) Microdimpled surface by ultrasonic nanocrystal surface modification and its tribological effects. Wear 286-287, 136-144. https://doi.org/10.1016/j.wear.2011.06.001
- Chen A Y, Ruan H H, Wang J, Chan H L, Wang Q, Li Q, and Lu J (2011) The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Mater. 59, 3697-3709. https://doi.org/10.1016/j.actamat.2011.03.005
-
Datta K, Delhez R, Bronsveld P M, Beyer J, Geijselaers H J M, and Post J (2009) A low-temperature study to examine the role of
$\varepsilon$ -martensite during strain-induced transformations in metastable austenitic stainless steels. Acta Mater. 57, 3321-3326. https://doi.org/10.1016/j.actamat.2009.03.039 - Du H, Wei Y, Lin W, Hou L, Liu Z, An Y, and Yang W (2009) One way of surface alloying treatment on iron surface based on surface mechanical attrition treatment and heat treatment. Appl. Surf. Sci. 255, 8660-8666. https://doi.org/10.1016/j.apsusc.2009.06.049
- Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2
- Guo F A, Trannoy N, and Lu J (2004) Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening. Superlattices Microstruct. 35, 445-453. https://doi.org/10.1016/j.spmi.2003.12.004
- He Y, Li K, Pyoun Y S, Cho I S, Lee C S, Park I G, Song J I, Yang C W, Lee J H, and Shin K (2014) Characterization of the nano-scale surface layer of a tempered martensitic steel synthesized by ultrasonic nanocrystalline surface modification treatment. Sci. Adv. Mater. 6, 2260-2268. https://doi.org/10.1166/sam.2014.2077
- Hong S J, Hwang G H, Han W K, and Kang S G (2011) Cyclic oxidation behavior of Pt-modified aluminide coating treated with ultrasonic nanocrystal surface modification (UNSM) on Ni-based superalloy. Surf. Coat. Technol. 205, 2714-2723. https://doi.org/10.1016/j.surfcoat.2010.09.039
- Kruml T, Polak J, and Degallaix S (2000) Microstructure in 316LN stainless steel fatigued at low temperature. Mater. Sci. Eng. A 293, 275-280. https://doi.org/10.1016/S0921-5093(00)01015-7
- Lee H, Kim D, Jung J, Pyoun Y, and Shin K (2009) Influence of peening on the corrosion properties of AISI 304 stainless steel. Corro. Sci. 51, 2826-2830. https://doi.org/10.1016/j.corsci.2009.08.008
- Lee T H, Ha H Y, Kang J Y, Moon J, Lee C H, and Park S J (2013) An intersecting-shear model for strain-induced martensitic transformation. Acta Mater. 61, 7399-7410. https://doi.org/10.1016/j.actamat.2013.08.046
- Lee W S and Lin C F (2000) The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scripta Mater. 43, 777-782. https://doi.org/10.1016/S1359-6462(00)00487-5
- Liu J L G and Lu K (2000) Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Eng. A 286, 91-95. https://doi.org/10.1016/S0921-5093(00)00686-9
- Liu X C, Zhang H W, and Lu K (2013) Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337-340. https://doi.org/10.1126/science.1242578
- Lu J Z, Luo K Y, Zhang Y K, Sun G F, Gu Y Y, Zhou J Z, Ren X D, Zhang X C, Zhang L F, Chen K M, Cui C Y, Jiang Y F, Feng A X, and Zhang L (2010) Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 58, 5354-5362. https://doi.org/10.1016/j.actamat.2010.06.010
- Lu K and Hansen N (2009) Structural refinement and deformation mechanisms in nanostructured metals. Scripta Mater. 60, 1033-1038. https://doi.org/10.1016/j.scriptamat.2009.02.027
- Lu K and Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375-377, 38-45. https://doi.org/10.1016/j.msea.2003.10.261
- Lu L, Shen Y, Chen X, Qian L, and Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304, 422-426. https://doi.org/10.1126/science.1092905
- Mayer T, Balogh L, Solenthaler C, Muller Gubler E, and Holdsworth S R (2012) Dislocation density and sub-grain size evolution of 2CrMoNiWV during low cycle fatigue at elevated temperatures. Acta Mater. 60, 2485-2496. https://doi.org/10.1016/j.actamat.2011.12.031
- Meyers M A, Mishra A, and Benson D J (2006) Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
- Nakada N, Ito H, Matsuoka Y, Tsuchiyama T, and Takaki S (2010) Deformation-induced martensitic transformation behavior in coldrolled and cold-drawn type 316 stainless steels. Acta Mater. 58, 895-903. https://doi.org/10.1016/j.actamat.2009.10.004
- Roland T, Retraint D, Lu K, and Lu J (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater. 54, 1949-1954. https://doi.org/10.1016/j.scriptamat.2006.01.049
- Suh C M, Song G H, Suh M S, and Pyoun Y S (2007) Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology. Mater. Sci. Eng. A 443, 101-106. https://doi.org/10.1016/j.msea.2006.08.066
- Tan L, Ren X, Sridharan K, and Allen T R (2000) Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation. Corro. Sci. 50, 2040-2046.
- Tao N R, Wu X L, Sui M L, Lu J, and Lu K (2004) Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J. Mater. Res. 19, 1623-1629. https://doi.org/10.1557/JMR.2004.0227
- Tao Z B W N R, Tong W P, Sui M L, Lu J, and Lu K (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603-4616. https://doi.org/10.1016/S1359-6454(02)00310-5
- Tong W P, Tao N R, Wang Z B, Lu J, and Lu K (2003) Nitriding iron at lower temperatures. Science 51, 686-688.
- Umemoto M, Todaka Y, and Tsuchiya K (2003) Formation of nanocrystalline structure in steels by air blast shot peening. Mater. Trans. 44, 1488-1493. https://doi.org/10.2320/matertrans.44.1488
- Wang K, Tao N R, Liu G, Lu J, and Lu K (2006) Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281-5291. https://doi.org/10.1016/j.actamat.2006.07.013
- Xue Q, Cerreta E, and Grayiii G (2007) Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel. Acta Mater. 55, 691-704. https://doi.org/10.1016/j.actamat.2006.09.001
- Yan F K, Liu G Z, Tao N R, and Lu K (2012) Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059-1071. https://doi.org/10.1016/j.actamat.2011.11.009
- Yu H, Dong J L, Yoo D H, Shin K, Jung J S, Pyoun Y, and Cho I (2009) Effect of ultrasonic and air blast shot peening on the microstructural evolution and mechanical properties of SUS304. J. Korean Phys. Soc. 54, 1161-1166. https://doi.org/10.3938/jkps.54.1161
- Zhang H W, Hei Z K, Liu G, Lu J, and Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871-1881. https://doi.org/10.1016/S1359-6454(02)00594-3
- Zhong C, Liu L, Wu Y, Deng Y, Shen B, Shu B, and Hu W (2010) Diffusion behavior of aluminum in the surface layer of iron processed by shot peening. Mater. Lett. 64, 1407-1409. https://doi.org/10.1016/j.matlet.2010.03.046
Cited by
- Microstructural Study of the Gradient Structured Austenitic Stainless Steel Treated by Shot Peening vol.22, pp.S3, 2016, https://doi.org/10.1017/S1431927616010837
- Using the two-way shape memory effect of NiTi to control surface texture for cellular mechanotransduction vol.27, pp.7, 2018, https://doi.org/10.1088/1361-665X/aac3fd