DOI QR코드

DOI QR Code

Semi-Variogram을 이용한 소규모 자연휴양림 내기상조건의 정밀 시공간 분포 추정

Estimating Precise Spatio-Temporal Distribution of Weather Condition Using Semi-Variogram in Small Scale Recreation Forest

  • 임철희 (고려대학교 환경생태공학과) ;
  • 유동훈 (고려대학교 기후환경학과) ;
  • 송철호 (고려대학교 환경생태공학과) ;
  • 주용언 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 환경생태공학과) ;
  • 김민선 (고려대학교 환경생태공학과)
  • LIM, Chul-Hee (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • RYU, Dong-Hoon (Department of Climate Environment, Korea University) ;
  • SONG, Chol-Ho (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • ZHU, Yong-Yan (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • LEE, Woo-Kyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • KIM, Min-Seon (Department of Environmental Science and Ecological Engineering, Korea University)
  • 투고 : 2015.06.02
  • 심사 : 2015.08.10
  • 발행 : 2015.09.30

초록

최근 각광받고 있는 산림치유를 위해서는 산림 내 기상조건의 시공간분포를 기초로 활동시간 및 공간을 계획할 필요가 있다. 본 연구에서는 국립용현자연휴양림에 기상관측 장비를 설치하여 장기 기상모니터링을 실시하고, 해당 자료를 통해 기상자료의 정밀 시공간 분포를 파악하여 산림휴양 치유 활동을 지원하고자 하였다. 먼저, Semi-Variogram을 추정하는 네 가지 모형을 통계적으로 비교한 결과, 모두 유사한 결과를 보이나, Circular 모형을 활용하는 것이 보다 정확할 수 있을 것으로 판단되어 본 연구에서는 Circular 모형의 결과를 제시하였다. Circular 모형으로 추정된 총 128개의 Semi-Variogram을 통해 계절 및 시간대에 따른 온 습도의 공간분포를 확인할 수 있었다. Partial Sill 값으로 표출한 Boxplot을 통해 보다 확연한 계절 및 시간대별 분포 차이를 확인할 수 있었는데, 그 결과 봄철과 이른 오전 시간대에는 온 습도가 모두 균일한 미기상 공간분포를 보였고, 여름과 이른 오후에는 온 습도 모두 불균일한 결과를 보였다. 봄철과 이른 오전 시간대에는 산림활동 시 공간의 이동에 따른 기상조건 변화가 적으므로, 휴양과 치유에 보다 긍정적일 수 있는 반면 상대적으로 불균일한 여름철과 이른 오후 시간에는 기상조건에 따른 위험이 따를 수 있으므로 별도의 준비가 필요할 것이다. 본 연구는 한 곳의 자연휴양림을 대상으로 사계절 기상조건의 정밀 시공간분포를 추정하여 계절별, 시간대별 세부적인 결과를 제시한 것에 큰 의미가 있다.

As forest therapy is getting more attention than ever, it is important to organize time for activity and location based on spatio-temporal distribution of weather condition in forest. This study aimed to analyze precise spatio-temporal distribution of weather condition by installing long-term weather monitoring device in Yonghyun national natural recreation forest and using acquired weather data in order to support forest recreation and therapy activity. First, we statistically compared 4 models of semi-variogram and the results were all similar. We selected and analyzed the circular model for this study because it was presumed to be the best model for this case. We derived 128 results from the circular model and through semi-variogram, we identified seasonal and temporal distributions of temperature and humidity. Then, we used boxplot, made of partial sill level, to identify significant differences in seasonal and temporal distributions. As a result, in spring and early morning, both temperature and humidity showed equalized result. On the other hand, in summer and early afternoon, both temperature and humidity showed uneven result. In spring and early morning, changes in weather condition are shown little from spatial shifting, it is ideal to perform recreational activities and forest therapy but in summer and early afternoon, it is unadvisable to do so as the changes in weather condition could be harmful unless any other means of preparations are made. This study proposes its significance by analyzing seasonal micro-weather of single recreation forest and presenting seasonal and temporal outcomes.

키워드

참고문헌

  1. Barreca, A.I. and J.P. Shimshack. 2012. Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States. American Journal of Epidemiology 176(7):114-122. https://doi.org/10.1093/aje/kws259
  2. Corobov, R., S. Sheridan, K. Ebi and N. Opopol. 2013. Warm Season Temperature-Mortality Relationships in Chisinau (Moldova). International Journal of Atmospheric Sciences 2013(Article ID 346024):1-9.
  3. Han, S.J., W.K. Lee and D.A. Kwak. 2006. GIS application for evaluating forest recreation functions. Journal of the Korean Association of Geographical Information Studies 9(1):13-19 (한수진,이우균, 곽두안. 2006. GIS를 이용한 산림휴양기능평가. 한국지리정보학회지 9(1):13-19).
  4. Jung, J., S. Jin and M.S. Park. 2008. Precipitation analysis based on spatial linear regression model. The Korean Journal of Applied Statistics 21(6): 1093-1107 (정지용, 진서훈, 박만식.2008. 공간적 상관구조를 포함하는 선형회귀모형을 이용한 강수량 자료 분석. 응용통계연구 21(6):1093-1107). https://doi.org/10.5351/KJAS.2008.21.6.1093
  5. Kang, B., S.B. Park, T. Kim, M.J. Kim, K.H. Lee, B. Jun, S.Y. Park and S.J. Lee. 2013. Pain relief effect on chronic posterior neck pain depending on the types of forests. Proceeding of the 41st Annual Meeting of the Korean Academy of Rehabilitation Medicine.
  6. Kang, B., S.B. Park, T. Kim, M.J. Kim, K.H. Lee and S.J. Lee. 2013. The therapeutic effect of forest therapy on chronic posterior neck pain. Proceeding of the 41st Annual Meeting of the Korean Academy of Rehabilitation Medicine.
  7. Kim, D.J. 2014. Impacts of the precipitation on forest recreation demand. Korean Journal of Agricultural and Forest Meteorology 16(2):125-130 (김동준. 2014.강수 요인이 산림휴양 수요에 미치는 영향.한국농림기상학회지 16(2):125-130). https://doi.org/10.5532/KJAFM.2014.16.2.125
  8. Kim, M.I., H. Kwak, W.K. Lee, M.S. Won and K.S. Koo. 2011. Study on regional spatial autocorrelation of forest fire occurrence in Korea. Journal of the Korean Society for Geospatial Information Science 19(2):29-37 (김문일, 곽한빈, 이우균, 원명수, 구교상. 2011. 우리나라 산불발생의 지역별 공간자기상관성에 관한 연구.한국지형공간정보학회지 19(2):29-37).
  9. Korea Forest Research Institute. 2008. Master plan of construct Saneum 'Healing Forest'(국립산림과학원. 2008. 산음'치유의 숲'조성 기본계획. 국립산림과학원 연구보고서).
  10. Korea Forest Service. 2011. Statistical Yearbook of Forestry. 41 (산림청. 2011. 임업통계연보. 41호).
  11. Kwak, H., W.K. Lee, J. Saborowski, S.Y. Lee, M.S. Won, K.S. Koo, M.B. Lee and S.N. Kim. 2012. Estimating the spatial pattern of human caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. International Journal of Geographical Information Science 26(9): 1589-1602. https://doi.org/10.1080/13658816.2011.642799
  12. Lim, C.H., C. Song, B. Kang, W.K. Lee, S.B. Park and S.J. Lee. 2014. The analysis on relationship between weather condition and forest therapy effect. The Journal of Korean Institute of Forest Recreation 18(1):85-97 (임철희, 송철호, 강보람, 이우균, 박시복, 이성재.2014. 산림치유효과와 기상조건 간의 관련성 분석. 한국산림휴양학회지 18(1):85-97).
  13. Lyu, K.H. 2013. A study on the development stage classification and characteristics of natural recreation forest in Korea. Ph.D. Thesis, Univ. of Korea University (류강현. 2013. 자연휴양림 발전단계의 구분과 특성 연구. 고려대학교 대학원 박사학위논문).
  14. Olivier, M.A and R. Webster. 1990. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems 4(3):313-332. https://doi.org/10.1080/02693799008941549
  15. Schwartz, J., J.M. Samet and J.A. Patz. 2004. Hospital admission for heart disease : the effects of temperature and humidity. Epidemiology 15(6):755-761. https://doi.org/10.1097/01.ede.0000134875.15919.0f
  16. Shaman, J., E. Goldstein and M. Lipsitch. 2010. Absolute humidity and pandemic versus epidemic influenza. American Journal of Epidemiology 173(2):127-135. https://doi.org/10.1093/aje/kwq347
  17. Sim, K.W. and H.K. Kwon. 2011. The impact of climate change on the forest recreation demand. The Journal of Korean Institute of Forest Recreation 15(2):35-40 (심규원, 권헌교. 2011. 기후변화가 산림휴양수요에 미치는 영향. 한국산림휴양학회지 15(2):35-40).
  18. Sung, S.J. 2015. Study on the actual management and operation state by type of recreational forest and improvement measures. Ph.D. Thesis, Daegu Haany University (성상제. 2015. 자연휴양림의 유형별 관리운영 실태와 개선방안에 관한 연구. 대구한의대학교 대학원 박사학위논문).
  19. Thornton, P.E., H. Hasenauer and M.A. White. 2000. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agricultural and Forest Meteorology 104:255-271. https://doi.org/10.1016/S0168-1923(00)00170-2
  20. Wells, N.M. and Evans, G.W. 2003. Nearby nature: a buffer of life stress among rural children. Environment & Behavior 35(3):311-330. https://doi.org/10.1177/0013916503035003001

피인용 문헌

  1. Estimating Spatio-Temporal Distribution of Climate Factors in Andong Dam Basin vol.23, pp.4, 2015, https://doi.org/10.7319/kogsis.2015.23.4.057
  2. Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea vol.10, pp.1, 2015, https://doi.org/10.1080/19475705.2018.1543210
  3. Mapping and Statistical Analysis of NO2 Concentration for Local Government Air Quality Regulation vol.11, pp.14, 2019, https://doi.org/10.3390/su11143809