DOI QR코드

DOI QR Code

Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments

산소희박환경에서 과산화수소를 이용한 디젤개질 가능성 탐구

  • 한광우 (한국과학기술원 기계공학과) ;
  • 배민석 (한국과학기술원 기계공학과) ;
  • 배중면 (한국과학기술원 기계공학과)
  • Received : 2015.02.16
  • Accepted : 2015.05.28
  • Published : 2015.10.01

Abstract

For effective power generation with fuel cells in low-oxygen environments such as submarines and unmanned underwater vehicles, a hydrogen source which has a high hydrogen storage density is required. Diesel fuel is easy to storage and supply due to its liquid phase and it has a high density per unit volume and unit mass of hydrogen that required for driving the fuel cells. In this paper, diesel fuel was selected as a hydrogen source for driving the fuel cell in oxygen lean environments. In addition, the aqueous hydrogen peroxide solution was suggested as an alternative oxidant for hydrogen production through the diesel reforming reaction because of its high oxygen density and liquid phase which makes it easy to storage. In order to determine the characteristics of hydrogen peroxide as an oxidant of diesel reforming, comparative experiments were conducted and it was found that hydrogen peroxide solution has the same characteristics when reformed with oxidants of both steam and oxygen. Moreover, the commercial diesel reforming performances were analyzed according to the reaction temperature and concentration of aqueous hydrogen peroxide solution. Then, through the 49 hours accelerated degradation tests, the possibility of hydrogen production via diesel and aqueous hydrogen peroxide solution was confirmed.

잠수함 및 수중무인체계 등의 산소희박환경에서 연료전지를 통한 효과적인 전력생산을 위해서는 높은 수소저장밀도를 갖는 수소공급원이 필요하다. 디젤연료는 액체연료로서 저장 및 공급이 용이하며, 연료전지의 연료가 되는 수소의 단위질량 및 단위부피당 저장밀도가 높은 장점을 갖고 있다. 이러한 디젤연료의 장점을 기반으로 본 연구에서는 산소희박환경에서 수소생산을 위해 디젤연료의 개질반응을 이용하였으며, 산화제로 단위부피당 산소 저장밀도가 높고 액상으로 보관이 용이한 과산화수소 수용액을 기존의 산화제인 물과 산소의 대체산화제로 이용하는 방법을 제안하였다. 과산화수소 수용액의 디젤개질 산화제로써의 특성을 파악하기 위해 물, 공기 산화제와의 비교실험을 진행하였으며, 기존의 산화제와 디젤 개질반응 시 동일한 특성을 갖는 것을 실험적으로 확인하였다. 또한 상용디젤을 연료로 온도 및 과산화수소 수용액의 농도에 따른 개질성능을 평가하였으며, 49시간의 가속 열화실험을 통하여 디젤, 과산화수소 수용액을 이용한 수소생산의 가능성을 확인하였다.

Keywords

References

  1. Hayre, R. O., Cha, S. W., Colella, W. and Prinz, F. B., Fuel cell fundamentals, 2nd ed., John Wiley & Sons, New York(2009).
  2. Larmine, J. and Dicks, A., Fuel cell systems explained, 2nd ed., Wiley, New York(2003).
  3. Choudhury, N. A., Raman, R. K., Sampath, S. and Shukla, A. K., "An Alkaline Direct Borohydride Fuel Cell with Hydrogen Peroxide as Oxidant," J. Power Sources, 143(1-2), 1-8 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.059
  4. Ahmed, S. and Krumpelt, M., "Hydrogen from Hydrocarbon Fuels for Fuel Cells," Int. J. Hydrogen Energy, 26(4), 291-301(2001). https://doi.org/10.1016/S0360-3199(00)00097-5
  5. Park, J. H., Lee, D., Lee, H. C. and Park, E. D., "Steam Reforming of Liquid Petroleum Gas over mn-promoted ni/$\gamma$-al2o3 Catalysts," Korean J. Chem. Eng., 27(4), 1132-1138(2010). https://doi.org/10.1007/s11814-010-0212-9
  6. Jung, I., Park, C., Park, S., Na, J. and Han, C., "A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System Under the Simple Heat Exchanger Network," Korean Chem. Eng. Res., 52(6), 720-726(2014). https://doi.org/10.9713/kcer.2014.52.6.720
  7. Kang, I. and Bae, J., "Autothermal Reforming Study of Diesel for Fuel Cell Application," J. Power Sources, 159(2), 1283-1290(2006). https://doi.org/10.1016/j.jpowsour.2005.12.048
  8. Shamsi, A., Baltrus, J. R. and Spivey, J. J., "Characterization of Coke Deposited on pt/alumina Catalyst During Reforming of Liquid Hydrocarbons," Appl Catal a-Gen, 293, 145-152(2005). https://doi.org/10.1016/j.apcata.2005.07.002
  9. Cheekatamarla, P. K. and Lane, A. M., "Catalytic Autothermal Reforming of Diesel Fuel for Hydrogen Generation in Fuel Cells: I. Activity Tests and Sulfur Poisoning," J. Power Sources, 152(0), 256-263(2005). https://doi.org/10.1016/j.jpowsour.2005.03.209
  10. Kopasz, J. P., Applegate, D., Miller, L., Liao, H. K. and Ahmed, S., "Unraveling the Maze: Understanding of Diesel Reforming Through the use of Simplified Fuel Blends," Int. J. Hydrogen Energy, 30(11), 1243-1250(2005). https://doi.org/10.1016/j.ijhydene.2005.02.012
  11. Goodenough, L. R. H. and Greig, A., "Hybrid Nuclear/fuel-cell Submarine," J. Naval Eng., 44(3), 455-471(2008).
  12. Yoon, S., Kang, I. and Bae, J., "Effects of Ethylene on Carbon Formation in Diesel Autothermal Reforming," Int. J. Hydrogen Energy, 33(18), 4780-4788(2008). https://doi.org/10.1016/j.ijhydene.2008.05.025
  13. Reese, M. A., Turn, S. Q. and Cui, H., "High Pressure Autothermal Reforming in Low Oxygen Environments," J. Power Sources, 187(2), 544-554(2009). https://doi.org/10.1016/j.jpowsour.2008.11.040
  14. Elsalamony, R. A., Abd El-Hafiz, D. R., Ebiad, M. A., Mansour, A. M. and Mohamed, L. S., "Enhancement of Hydrogen Production via Hydrogen Peroxide as an Oxidant," Rsc Advances, 3(45), 23791-23800(2013). https://doi.org/10.1039/c3ra43560a
  15. Kang, I., Yoon, S., Bae, G., Kim, J. H., Bae, J., Lee, D. and Song, Y., "The Micro-reactor Testing of Catalysts and Fuel Delivery Apparatuses for Diesel Autothermal Reforming," Catal. Today, 136(3-4), 249-257(2008). https://doi.org/10.1016/j.cattod.2008.01.012
  16. Kang, I., Bae, J. and Bae, G., "Performance Comparison of Autothermal Reforming for Liquid Hydrocarbons, Gasoline and Diesel for Fuel Cell Applications," J. Power Sources, 163(1), 538-546(2006). https://doi.org/10.1016/j.jpowsour.2006.09.035
  17. Lee, S., Bae, M., Bae, J. and Katikaneni, S. P., "Ni-Me/Ce0.9Gd0.1O2-x (me: Rh, pt and ru) Catalysts for Diesel Pre-reforming," Int. J. Hydrogen Energy, 40(8), 3207-3216(2015). https://doi.org/10.1016/j.ijhydene.2014.12.113
  18. Bae, M., Han, G., Jang, H. and Bae, J., "Investigation of Possibilities for Pure-oxygen Diesel Reforming Using Hydrogen Peroxide as an Oxidant," KSME, April, Jeju(2014).
  19. Kwan, W. P. and Voelker, B. M., "Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite," Environ. Sci. Technol., 36(7), 1467-1476(2002). https://doi.org/10.1021/es011109p
  20. Yoon, S., Bae, J., Lee, S., Pham, T. V. and Katikaneni, S. P., "A Diesel Fuel Processor for Stable Operation of Solid Oxide Fuel Cells System: II. Integrated Diesel Fuel Processor for the Operation of Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 37(11), 9228-9236(2012). https://doi.org/10.1016/j.ijhydene.2012.02.183