DOI QR코드

DOI QR Code

Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 미세전자기계시스템의 식각, 세정, 건조 연속 공정

  • Min, Seon Ki (Department of Applied Chemical Engineering, Korea University of Technology & Education) ;
  • Han, Gap Su (C&B Industrial Co., Ltd.) ;
  • You, Seong-sik (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 민선기 (한국기술교육대학교 응용화학공학과) ;
  • 한갑수 (씨엔비 산업(주)) ;
  • 유성식 (한국기술교육대학교 응용화학공학과)
  • Received : 2014.11.06
  • Accepted : 2014.12.30
  • Published : 2015.10.01

Abstract

The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-$CO_2$ (supercritical-$CO_2$) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-$CO_2$. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-$CO_2$ without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, $25^{\circ}C$) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, $5^{\circ}C$, we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-$CO_2$ (7.5 Mpa, $40^{\circ}C$), we had as good results as those of the case using gas-$CO_2$. Besides the processing time was shortened compared with that of the case of using gas-$CO_2$.

기존의 초임계 이산화탄소를 이용하여 식각 및 건조하는 공정은 고압 건조기 외부에서 용매를 이용하여 웨이퍼를 식각한 후 고압 건조기로 이동시켜 초임계 이산화탄소를 이용하여 세정 및 건조 하는 2단계 공정으로 구성되어 있다. 이 공정을 이용하여 본 연구에서 실험을 수행한 결과 점착 없이 식각, 세정 및 건조가 가능함은 확인되었지만, 반복 실험 결과 재현성이 떨어지는 것을 확인하였다. 이것은 외부에서 식각한 후 건조기로 이동할 때 식각용 용매가 기화하여 구조물이 점착되는 문제가 발생하기 때문이었다. 본 연구에서는 이 문제를 개선하기 위하여 웨이퍼를 이동시키지 않고, 고압 건조기 내에서 초임계 이산화탄소를 이용하여 미세전자기계시스템 웨이퍼의 식각, 세정 및 건조공정을 연속적으로 수행하고자 하였다. 또한, 연속공정 수행 시 식각 공정에서 사용하는 이산화탄소의 상태(기체, 액체, 초임계상태)에 따른 영향을 알아보고자 하였다. 기체 이산화탄소를 이용하여 식각하는 경우(3 MPa, $25^{\circ}C$)에는 점착 없는 식각, 세정 및 건조를 할 수 있었고 반복 실험을 통하여 공정의 최적화 및 재현성을 확인하였다. 또한 기존의 2단계로 이루어진 공정에 비해 세정용 용매의 양을 절감 할 수 있었다. 액체 이산화탄소를 이용하여 식각하는 경우(3 MPa, $5^{\circ}C$) 액체 이산화탄소와 식각용 공 용매(아세톤)간의 층 분리가 일어나 완전한 식각이 이루어지지 않았다. 초임계 이산화탄소를 이용하여 식각 하는 경우(7.5 MPa, $40^{\circ}C$) 점착 없는 식각, 세정 및 건조를 할 수 있었고 기존 2단계 공정에 비해 세정용 용매의 절감 뿐 아니라 기체 이산화탄소를 이용한 연속공정에 비하여 공정시간도 단축시킬 수 있었다.

Keywords

References

  1. Kazuo, S., "Perspective of Micro-Nano Science and Technology," Journal of the Japan Society of Mechanical Engineers., 116(113), 12-15(2013). https://doi.org/10.1299/jsmemag.116.1130_12
  2. Kim, T. H., Kim, D. Y., Chun, M. S. and Lee, S. S., "MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis," Korean Chem. Eng. Res., 44(5), 513-519(2006).
  3. Han, G. S., Lim, J. S. and Yoo, K. P., "Wafer Cleaning Using Supercritical Carbon Dioxide," Prospectives of Industrial Chemistry., 9(1), 2-11(2006).
  4. Jafri, I., Busta, H. and Walsh, S., "Critical Point Drying and Cleaning for MEMS Technology," Proceeding of SPIE., 3880, 51-58(1999).
  5. Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R. and Elwenspoek, M., "Stiction in Surface Micromachining," Journal of Micromechanics and Microengineering., 6, 385(1996). https://doi.org/10.1088/0960-1317/6/4/005
  6. Jincao, Y. and Matthews, M. A., "Prevention of Photoresist Pattern Collapse Using Liquid Carbon Dioxide," Industrial & Engineering Chemistry Research., 40(24), 5858(2001). https://doi.org/10.1021/ie010424h
  7. Lee, M. Y., Do, K. M. and Lo, Y. S., "Surfactant-aided Supercritical Carbon Dioxide Drying for Photoresists to Prevent Pattern Collapse," The Journal of Supercritical Fluids., 42(1), 150-156(2007). https://doi.org/10.1016/j.supflu.2006.12.014
  8. Jeon, B. Y. and Lee, C. M., "Dry Cleaning for Metallic Contaminants Removal after the Chemical Mechanical Polishing (CMP) Process," Journal of the Korean Vaccum Society., 9(2), 102-109(2000).
  9. Rubin, J. B., Davenhall, L. B., Taylor, C. M. V., Sivils, L. D., Pierce, T. and Tiefert, K., "$CO_2$-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents," Electronics Manufacturing Technology Symposium, 23, 308-314(1998).
  10. Han, G. S., "Supercritical $CO_2$ Dry Cleaning of Nano-Pattern Semiconductor," Ph. D. Dissertation, Sogang University, Korea(2009).
  11. Song, K. M., Hong, W. H., Lee, H., Kwak, S. S. and Liu, J. R., "Extraction Rates of Vindol ine and Catharanthine from Catharanthine Roseus with Supercritical Carbon dioxide," Korean Chem. Eng. Res., 31(3), 318-324(1993).
  12. Lee, H. H. and Kim, S. W., "Preparation of Polymeric Fine Particles with Various Morphologies using Supercritical Fluid," Korean Chem. Eng. Res., 42(2), 202-212(2004).
  13. Lee, Y. W., "Design of Particles using Supercritical Fluids," Korean Chem. Eng. Res., 41(6), 679-688(2004).
  14. Hong, I. K. and Lee, S., "Microcellular Foaming of Silicon with Supercritical Carbon Dioxide," Korean J. Chem. Eng., 31(1), 166-171(2004). https://doi.org/10.1007/s11814-013-0188-3
  15. Modell, M., "Processing Methods for the Oxidation of Organics in Supercritical Water," U.S. Patent No. 4, 338, 199(1982).
  16. Jones, C. A., Zweber, A., Deyoung, J. P., MmLlain, J. B., Carbonell, R. and Desimon, J. M., "Applications of Dry Processing in the Microelectronics Industry Using Carbon Dioxide," Critical Reviews in Solid State and Materials Sciences., 29, 97(2004). https://doi.org/10.1080/10408430490888968