DOI QR코드

DOI QR Code

Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study

  • Gac, Jakub M. (Faculty of Chemical and Process Engineering, Warsaw University of Technology) ;
  • Bojarska, Marta (Faculty of Chemical and Process Engineering, Warsaw University of Technology) ;
  • Stepniewska, Izabela (Faculty of Chemical and Process Engineering, Warsaw University of Technology) ;
  • Piatkiewicz, Wojciech (Faculty of Chemical and Process Engineering, Warsaw University of Technology) ;
  • Gradon, Leon (Faculty of Chemical and Process Engineering, Warsaw University of Technology)
  • Received : 2014.10.29
  • Accepted : 2015.07.15
  • Published : 2015.09.25

Abstract

Membrane modification by different concentrations of acrylic acid has been described. Grafting of acrylic acid to the surface of a polypropylene membrane was obtained by a Fenton-type reaction. Membrane permeability seemed to have been dependent on the value of pH in the solution. To explain tendency, a simple theoretical model was developed. The model incorporates explicitly statistical conformations of a polyacid chain grafted onto the pore surface. The charged capillary model with a varying diameter for porous membranes was then used to evaluate the permeability of the membrane. It has been shown both theoretically and experimentally that the permeability of a grafted membrane depends on the pH of the solution.

Keywords

References

  1. Barros, A.G., Fechine, G.J.M., Alcantara, M.R. and Catalani, L.H. (2006), "Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction", Polymer, 47(26), 8414-8419. https://doi.org/10.1016/j.polymer.2006.10.033
  2. Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal", Membr. Water Treat., Int. J., 2(1), 25-37. https://doi.org/10.12989/mwt.2011.2.1.025
  3. Butruk, B., Trzaskowski, M. and Ciach, T. (2012), "Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction", Mater. Sci. Eng. C, 32(6), 1601-1609. https://doi.org/10.1016/j.msec.2012.04.050
  4. Casolaro, M. and Barbucci, R. (1993), "Protonation thermodynamics of membranes grafted with polyelectrolytes controlling solute permeability", Colloids Surf. A, 77(2), 81-89. https://doi.org/10.1016/0927-7757(93)80104-M
  5. Cheng, C., Ma, L., Wu, D., Ren, J., Zhao, W., Xue, J., Sun, S. and Zhao, C. (2011), "Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes", J. Membrane Sci., 378(1-2), 369-381. https://doi.org/10.1016/j.memsci.2011.05.028
  6. Chun, H.J., Cho, S.M., Lee, Y.M., Lee, H.K., Suh, T.S. and Shin, K.S. (1999), "Graft copolymerization of mixtures of acrylic acid and acrylamide onto polypropylene film", J. Appl. Polym. Sci., 72(2), 251-256. https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<251::AID-APP10>3.0.CO;2-V
  7. Dessouki, A.M., Taher, N.H. and El-Arnaouty, M.B. (1998), "Gamma ray induced graft copolymerization of N-vinylpyrrolidone, acrylamide and their mixtures onto polypropylene films", Polym. Int., 45(1), 67-76. https://doi.org/10.1002/(SICI)1097-0126(199801)45:1<67::AID-PI896>3.0.CO;2-A
  8. Gupta, B., Plummer, C., Bisson, I., Frey, P. and Hilborn, J. (2002), "Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films", Biomaterials, 23(3), 863-871. https://doi.org/10.1016/S0142-9612(01)00195-8
  9. Hautojarvi, J., Kontturi, K., Nasman, J.H., Svarfvar, B.L., Viinikka, P. and Vuoristo, M. (1996), "Characterization of graft-modified porous polymer membranes", Ind. Eng. Chem. Res., 35(2), 450-457. https://doi.org/10.1021/ie950223b
  10. Hill, T.L. (1986), An Introduction to Statistical Thermodynamics, Dover, New York, NY, USA.
  11. Hu, K. and Dickson, J.M. (2007), "Development and characterization of poly(vinylidene fluoride)- poly(acrylic acid) pore-filled pH-sensitive membranes", J. Membr. Sci., 301(1-2), 19-28. https://doi.org/10.1016/j.memsci.2007.05.031
  12. Kang, G., Yu, H., Liu, Z. and Cao, Y. (2011), "Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly(ethylene glycol) derivatives", Desalination, 275(1-3), 252-259. https://doi.org/10.1016/j.desal.2011.03.007
  13. Kim, M., Saito, K. and Forusaki, S. (1991), "Water flux and protein adsorption of a hollow fiber modified with hydroxyl groups", J. Membr. Sci., 56(3), 289-302. https://doi.org/10.1016/S0376-7388(00)83039-2
  14. Kontturi, K., Mafe, S., Manzanares, J.A., Svarfvar, B.L. and Viinikka, P. (1996), "Modeling of the salt and pH effects on the permeability of grafted porous membranes", Macromolecules, 29(17), 5740-5746. https://doi.org/10.1021/ma960501y
  15. Lei, J. and Liao, X. (2000), "Surface graft copolymerization of acrylic acid onto LDPE film through corona discharge", Eur. Polym. J., 37(4), 771-779. https://doi.org/10.1016/S0014-3057(00)00177-4
  16. Liu, F., Abed, M.R.M. and Li, K. (2011), "Hydrophilic modification of P(VDF-co-CTFE) porous membranes", Chem. Eng. Sci., 66(1), 27-35. https://doi.org/10.1016/j.ces.2010.09.026
  17. Ma, H., Bowman, Ch.N. and Davis, R.H. (2000a), "Membrane fouling reduction by backpulsing and surface modification", J. Membr. Sci., 173(2), 191-200. https://doi.org/10.1016/S0376-7388(00)00360-4
  18. Ma, H., Davis, R.H. and Bowmann, C.N. (2000b), "A novel sequential photoinduced living graft polymerization", Macromolecules, 33(2), 331-335. https://doi.org/10.1021/ma990821s
  19. Nishi, S. and Kotaka, T. (1986), "Complex-forming poly(oxyethylene)/poly(acrylic acid) interpenetrating polymer networks. 2. Function as a chemical valve", Macromolecules, 19(4), 978-984. https://doi.org/10.1021/ma00158a007
  20. Ramirez, P., Mafe, S., Alcaraz, A. and Cervera, J. (2003), "Modeling of pH-switchable ion transport and selectivity in nanopore membranes with fixed charges", J. Phys. Chem. B, 107(47), 13178-13187. https://doi.org/10.1021/jp035778w
  21. Song, C., Shi, W., Jiang, H., Tu, J. and Ge, D. (2011), "pH-sensitive characteristics of poly(acrylic acid)-functionalized anodic aluminum oxide (AAO) membranes", J. Membr. Sci., 372(1-2), 340-345. https://doi.org/10.1016/j.memsci.2011.02.017
  22. Stengaard, F.F. (1988), "Characteristics and performance of new types of ultrafiltration membranes with chemically modified surfaces", Desalination, 70(1-3), 207-224. https://doi.org/10.1016/0011-9164(88)85055-0
  23. Suzuki, M., Kishida, A., Iwata, H. and Ikada, Y. (1986), "Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge", Macromolecules, 19(7), 1804-1808. https://doi.org/10.1021/ma00161a005
  24. Wang, R., Xiang, T., Yue, W., Li, H., Liang, S., Sun, S. and Zhao, C. (2012), "Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membranes modified by poly(methyl methylacrylate-co-4-vinyl pyridine) copolymer", J. Membr. Sci. 423-424, 275-283. https://doi.org/10.1016/j.memsci.2012.08.022
  25. Wei, X., Wang, Z., Wang, J. and Wang, S. (2012), "A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite", Membr. Water Treat., Int. J., 3(1), 35-49. https://doi.org/10.12989/mwt.2012.3.1.035
  26. Yang, W.T. and Ranby, B. (1999), "Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system", Eur. Polym. J., 35(8), 1557-1568. https://doi.org/10.1016/S0014-3057(98)00231-6
  27. You, H.-Y., Xu, Z.-K., Yang, Q., Hu, M.-X. and Wang, S.-Y. (2006), "Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid", J. Membr. Sci., 281(1-2), 658-665. https://doi.org/10.1016/j.memsci.2006.04.036
  28. Zhao, J.Q. and Gauskens, G. (1999), "Surface modification of polymers VI. Thermal and radiochemical grafting of acrylamide on polyethylene and polystyrene", Eur. Polym. J., 35(12), 2115-2123. https://doi.org/10.1016/S0014-3057(99)00026-9

Cited by

  1. Mathematical Model for Numerical Simulation of Organic Compound Recovery Using Membrane Separation vol.41, pp.2, 2018, https://doi.org/10.1002/ceat.201700445
  2. Modification of polypropylene membranes by ion implantation vol.37, pp.3, 2016, https://doi.org/10.1515/cpe-2016-0027
  3. Simulation of Nonporous Polymeric Membranes Using CFD for Bioethanol Purification vol.27, pp.3, 2018, https://doi.org/10.1002/mats.201700084