DOI QR코드

DOI QR Code

Performance and characterization of PEG400 modified PVC ultrafiltration membrane

  • Aryanti, P.T.P. (Chemical Engineering, Institut Teknologi Bandung) ;
  • Yustiana, R. (Chemical Engineering, Institut Teknologi Bandung) ;
  • Purnama, R.E.D. (Production Division, PT Asahimas Chemical) ;
  • Wenten, I.G. (Chemical Engineering, Institut Teknologi Bandung)
  • Received : 2014.12.04
  • Accepted : 2015.07.01
  • Published : 2015.09.25

Abstract

Polyvinyl chloride (PVC) ultrafiltration membrane was prepared by blending 12 wt.% of PVC in N, N-dimethylacetimide (DMAc) with polyethylene glycol 400 (PEG400) as an additive. The influence of PEG400 concentration on the PVC membrane morphology, permeability, fouling and rejection were investigated. Fouling and rejection of the PVC membrane were characterized by dextran T-100 filtration. The results showed that membrane water flux was increased up to $682Lm^{-2}h^{-1}$ when 28 wt.% of PEG400 was added into the PVC membrane solution. The best membrane performance with a low fouling and a high selectivity was achieved by adding 12 wt.% concentration of PEG400, which resulted in 90% rejection of dextran and 90% of flux recovery ratio. At further addition of PEG400 concentration, irreversible fouling was starting to increase. A 90% of irreversible fouling was formed in the PVC membrane when more than 22 wt.% of PEG400 is added.

Keywords

References

  1. Aryanti, P.T.P., Khoiruddin and Wenten, I.G. (2013), "Influence of additives on polysulfone-based ultrafiltration membrane performance during peat water filtration", J. Water Sustain., 3(2), 85-96.
  2. Aryanti, P.T.P., Subagjo, S., Ariono, D. and Wenten, I.G. (2015), "Fouling and rejection characteristic of humic substances in polysulfone ultrafiltration membrane", J. Membr. Sci. Res., 1(1), 41-45.
  3. Babu, P.R. and Gaikar, V. (1999), "Preparation, structure, and transport properties of ultrafiltration membranes of poly (vinyl chloride)(PVC), carboxylated poly (vinyl chloride)(CPVC), and PVC/CPVC blends", J. Appl. Polym. Sci., 73(7), 1117-1130. https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1117::AID-APP3>3.0.CO;2-H
  4. Babu, P.R. and Gaikar, V. (2000), "Preparation, structure, and transport properties of ultrafiltration membranes of poly (vinyl chloride) and poly (vinyl pyrrolidone) blends", J. Appl. Polym. Sci., 77(12), 2606-2620. https://doi.org/10.1002/1097-4628(20000919)77:12<2606::AID-APP80>3.0.CO;2-Z
  5. Barth, C., Goncalves, M., Pires, A., Roeder, J. and Wolf, B. (2000), "Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance", J. Membr. Sci, 169(2), 287-299. https://doi.org/10.1016/S0376-7388(99)00344-0
  6. Bellona, C., Drewes, J.E., Xu, P. and Amy, G. (2004), "Factors affecting the rejection of organic solutes during NF/RO treatment - A literature review", Water Res., 38(12), 2795-2809. https://doi.org/10.1016/j.watres.2004.03.034
  7. Bodzek, M. and Konieczny, K. (1991), "The influence of molecular mass of poly (vinyl chloride) on the structure and transport characteristics of ultrafiltration membranes", J. Membr. Sci., 61, 131-156. https://doi.org/10.1016/0376-7388(91)80011-T
  8. Boom, R.M. (1992), Membrane Formation by Immersion Precipitation: The Role of a Polymeric Additive, University of Twente, Netherlands.
  9. Chakrabarty, B., Ghoshal, A. and Purkait, M. (2008a), "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309(1), 209-221. https://doi.org/10.1016/j.memsci.2007.10.027
  10. Chakrabarty, B., Ghoshal, A. and Purkait, M. (2008b), "Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive", J.Membr. Sci., 315(1), 36-47. https://doi.org/10.1016/j.memsci.2008.02.027
  11. Chen, V., Fane, A., Madaeni, S. and Wenten, I. (1997), "Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation", J. Membr. Sci., 125(1), 109-122. https://doi.org/10.1016/S0376-7388(96)00187-1
  12. Geise, G.M., Park, H.B., Sagle A.C., Freeman, B.D. and McGrath, J.E. (2011), "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369(1-2), 130-138. https://doi.org/10.1016/j.memsci.2010.11.054
  13. Guo, X., Gao, W., Li, J. and Hu, W. (2009a), "Fouling and cleaning characteristics of ultrafiltration of hydrophobic dissolved organic matter by a polyvinyl chloride hollow fiber membrane", Water Environ. Res., 81(6), 626-632. https://doi.org/10.2175/106143008X370368
  14. Guo, X., Zhang, Z., Fang, L. and Su, L. (2009b), "Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane",, Desalination, 238(1), 183-191. https://doi.org/10.1016/j.desal.2007.11.064
  15. Hirose, S., Yasukawa, E. and Nose, T. (1981), ",Wet poly (vinyl chloride) membrane", J. Appl. Polym. Sci., 26(3), 1039-1048. https://doi.org/10.1002/app.1981.070260326
  16. Hwang, K.-J. and Sz, P.-Y. (2010), "Filtration characteristics and membrane fouling in cross-flow microfiltration of BSA/dextran binary suspension", J. Membr. Sci., 347(1), 75-82. https://doi.org/10.1016/j.memsci.2009.10.008
  17. Jucker, C. and Clark, M.M. (1994), "Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes", J. Membr. Sci., 97, 37-52. https://doi.org/10.1016/0376-7388(94)00146-P
  18. Khare, V.P., Greenberg, A.R., Zartman, J., Krantz, W.B. and Todd, P. (2002), "Macrovoid growth during polymer membrane casting", Desalination, 145(1), 17-23. https://doi.org/10.1016/S0011-9164(02)00324-7
  19. Kim, J.-H. and Lee, K.-H. (1998), "Effect of PEG additive on membrane formation by phase inversion", J. Membr. Sci., 138(2), 153-163. https://doi.org/10.1016/S0376-7388(97)00224-X
  20. Kim, I.C. and Lee, K.H. (2003), "Effect of various additives on pore size of polysulfone membrane by phase-inversion process", J. Appl. Polym. Sci., 89(9), 2562-2566. https://doi.org/10.1002/app.12009
  21. Kim, D.S., Kang, J.S., Kim, K.Y. and Lee, Y.M. (2002), "Surface modification of a poly (vinyl chloride) membrane by UV irradiation for reduction in sludge adsorption", Desalination, 146(1), 301-305. https://doi.org/10.1016/S0011-9164(02)00494-0
  22. Koenhen, D., Mulder, M. and Smolders, C. (1977), "Phase separation phenomena during the formation of asymmetric membranes", J. Appl. Polym. Sci., 21(1), 199-215. https://doi.org/10.1002/app.1977.070210118
  23. Lee, K.W., Seo, B.K., Nam, S.K. and Han, M.T. (2003), "Trade-off between thermodynamic enhancement and kinetic hinderance during phase inversion in the preparation of polysulfone membranes", Desalination, 156(3), 289-296.
  24. Liu, Y., Koops, G. and Strathmann, H. (2003), "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution", J. Membr. Sci., 223(1), 187-199. https://doi.org/10.1016/S0376-7388(03)00322-3
  25. Liu, F., Zhu, B.K. and Xu, Y.Y. (2007), "Preparation and characterization of poly (vinyl chloride)-graftacrylic acid membrane by electron beam", J. Appl. Polym. Sci., 105(2), 291-296. https://doi.org/10.1002/app.25641
  26. Liu, B., Chen, C., Zhang, W., Crittenden, J. and Chen, Y. (2012), "Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance", Desalination, 307, 26-33. https://doi.org/10.1016/j.desal.2012.07.036
  27. Ma, H., Hakim, L.F., Bowman, C.N. and Davis, R.H. (2001), "Factors affecting membrane fouling reduction by surface modification and backpulsing", J. Membr. Sci., 189(2), 255-270. https://doi.org/10.1016/S0376-7388(01)00422-7
  28. Ma, Y., Shi, F., Ma, J., Wu, M., Zhang, J. and Gao, C. (2011), "Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes", Desalination, 272(1), 51-58. https://doi.org/10.1016/j.desal.2010.12.054
  29. Maziad, N.A., Sayed, M.S. and Hegazy, E.S.A. (2002), "Use of radiation grafted PVC-acrylamide membranes in radioactive waste treatment", Polym. Int., 51(2), 150-155. https://doi.org/10.1002/pi.806
  30. Mei, S., Xiao, C. and Hu, X. (2011a), "Preparation of porous PVC membrane via a phase inversion method from PVC/DMAc/water/additives", J. Appl. Polym. Sci., 120(1), 557-562. https://doi.org/10.1002/app.33219
  31. Mei, S., Xiao, C., Hu, X. and Shu, W. (2011b), "Hydrolysis modification of PVC/PAN/SiO2 composite hollow fiber membrane", Desalination, 280(1-3), 378-383. https://doi.org/10.1016/j.desal.2011.07.026
  32. Miller, D.J., Kasemset, S., Wang, L., Paul, D.R. and Freeman, B.D. (2014), "Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes", J. Membr. Sci., 452, 171-183. https://doi.org/10.1016/j.memsci.2013.10.037
  33. Nguyen, A.H., Tobiason, J.E. and Howe, K.J. (2011), "Fouling indices for low pressure hollow fiber membrane performance assessment", Water Res., 45(8), 2627-2637. https://doi.org/10.1016/j.watres.2011.02.020
  34. Okuno, H., Renzo, K. and Uragami, T. (1993), "Influence of casting solution additive, degree of polymerization, and polymer concentration on poly (vinyl chloride) membrane properties and performance", J. Membr. Sci., 83(2), 199-209. https://doi.org/10.1016/0376-7388(93)85267-Z
  35. Peng, N., Chung, T.-S. and Wang, K.Y. (2008), "Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes", J. Membr Sci., 318(1), 363-372. https://doi.org/10.1016/j.memsci.2008.02.063
  36. Radovanovic, P., Thiel, S.W. and Hwang, S.-T. (1992), "Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation", J. Membr. Sci., 65(3), 213-229. https://doi.org/10.1016/0376-7388(92)87024-R
  37. Rajesh, S., Maheswari, P., Senthilkumar, S., Jayalakshmi, A. and Mohan, D. (2011), "Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions", Chem. Eng. J., 171(1), 33-44. https://doi.org/10.1016/j.cej.2011.03.033
  38. Ren, J., Zhou, J. and Deng, M. (2010), "Morphology transition of asymmetric flat sheet and thicknessgradient membranes by wet phase-inversion process", Desalination, 253(1), 1-8. https://doi.org/10.1016/j.desal.2009.12.001
  39. Reuvers, A.J. and Smolders, C.A. (1987), "Formation of membranes by means of immersion precipitation : Part II. the mechanism of formation of membranes prepared from the system cellulose acetateacetone- water", J. Membr. Sci., 34(1), 67-86. https://doi.org/10.1016/S0376-7388(00)80021-6
  40. Sinha, M.K. and Purkait, M.K. (2013), "Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether", J. Membr. Sci., 437, 7-16. https://doi.org/10.1016/j.memsci.2013.03.003
  41. Stropnik, C. and Kaiser, V. (2002), "Polymeric membranes preparation by wet phase separation: mechanisms and elementary processes", Desalination, 145(1), 1-10. https://doi.org/10.1016/S0011-9164(02)00322-3
  42. Susanto, H., Franzka, S. and Ulbricht, M. (2007), "Dextran fouling of polyethersulfone ultrafiltration membranes-causes, extent and consequences", J. Membr. Sci., 296(1), 147-155. https://doi.org/10.1016/j.memsci.2007.03.027
  43. Tian, J.-y., Chen, Z.-l., Yang, Y.-l., Liang, H., Nan, J. and Li, G.-b. (2010), "Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water", Water Res., 44(1), 59-68. https://doi.org/10.1016/j.watres.2009.08.053
  44. Torrestiana-Sanchez, B., Ortiz-Basurto, R. and Brito-De La Fuente, E. (1999), "Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes", J. Membr. Sci., 152(1), 19-28. https://doi.org/10.1016/S0376-7388(98)00172-0
  45. Vigo, F. and Uliana, C. (1989), "Ultrafiltration membranes obtained by grafting hydrophilic monomers onto poly (vinyl chloride)", J. Appl. Polym. Sci., 38(7), 1197-1209. https://doi.org/10.1002/app.1989.070380701
  46. Vigo, F., Nicchia, M. and Uliana, C. (1988), "Poly (vinyl chloride) ultrafiltration membranes modified by high frequency discharge treatment", J. Membr. Sci., 36, 187-199. https://doi.org/10.1016/0376-7388(88)80016-4
  47. Vrijenhoek, E.M., Hong, S. and Elimelech, M. (2001), "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188(1), 115-128. https://doi.org/10.1016/S0376-7388(01)00376-3
  48. Wickramasinghe, S.R., Bower, S.E., Chen, Z., Mukherjee, A. and Husson, S.M. (2009), "Relating the pore size distribution of ultrafiltration membranes to dextran rejection", J. Membr. Sci., 340(1), 1-8. https://doi.org/10.1016/j.memsci.2009.04.056
  49. Wijmans, J., Baaij, J. and Smolders, C. (1983), "The mechanism of formation of microporous or skinned membranes produced by immersion precipitation", J. Membr. Sci., 14(3), 263-274. https://doi.org/10.1016/0376-7388(83)80005-2
  50. Woo, S.H., Park, J. and Min, B.R. (2015), "Relationship between permeate flux and surface roughness of membranes with similar water contact angle values", Separ. Purif. Technol., 146, 187-191. https://doi.org/10.1016/j.seppur.2015.03.048
  51. Xu, J. and Xu, Z.-L. (2002), "Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent", J. Membr. Sci., 208(12), 203-212. https://doi.org/10.1016/S0376-7388(02)00261-2
  52. Zhang, W., Chu, P.K., Ji, J., Zhang, Y., Liu, X., Fu, R.K., Ha, P.C. and Yan, Q. (2006), "Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties", Biomaterials, 27(1), 44-51. https://doi.org/10.1016/j.biomaterials.2005.05.067
  53. Zhang, X., Chen, Y., Konsowa, A.H., Zhu, X. and Crittenden, J.C. (2009), "Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment", Separ. Purif. Technol., 70(1), 71-78. https://doi.org/10.1016/j.seppur.2009.08.019
  54. Zhang, Y., Tian, J., Liang, H., Nan, J., Chen, Z. and Li, G. (2011), "Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water", J. Environ. Sci., 23(4), 529-536. https://doi.org/10.1016/S1001-0742(10)60444-5
  55. Zheng, Q.-Z., Wang, P. and Yang, Y.-N. (2006), "Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process", J. Membr. Sci., 279(1), 230-237. https://doi.org/10.1016/j.memsci.2005.12.009
  56. Zhong, Z., Li, D., Zhang, B. and Xing, W. (2012), "Membrane surface roughness characterization and its influence on ultrafine particle adhesion", Separ. Purif. Technol., 90, 140-146. https://doi.org/10.1016/j.seppur.2011.09.016

Cited by

  1. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane vol.4, pp.2, 2017, https://doi.org/10.1088/2053-1591/aa5cd4
  2. From lab to full-scale ultrafiltration in microalgae harvesting vol.877, 2017, https://doi.org/10.1088/1742-6596/877/1/012002
  3. Functionalized carbon nanotube (CNT) membrane: progress and challenges vol.7, pp.81, 2017, https://doi.org/10.1039/C7RA08570B
  4. Surface modification of ion-exchange membranes: Methods, characteristics, and performance vol.134, pp.48, 2017, https://doi.org/10.1002/app.45540
  5. Beverage dealcoholization processes: Past, present, and future vol.71, 2018, https://doi.org/10.1016/j.tifs.2017.10.018
  6. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane vol.4, pp.5, 2017, https://doi.org/10.1088/2053-1591/aa6ee0
  7. Membrane separation for non-aqueous solution vol.285, 2018, https://doi.org/10.1088/1757-899X/285/1/012008
  8. LTA zeolite membranes: current progress and challenges in pervaporation vol.7, pp.47, 2017, https://doi.org/10.1039/C7RA03341A
  9. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production vol.156, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815608008
  10. Recent advances in waste lube oils processing technologies pp.19447442, 2018, https://doi.org/10.1002/ep.13011
  11. Electrochemical Properties of Chemically Treated Polyvinylchloride-Based Heterogeneous Cation-Exchange Membrane pp.00323888, 2018, https://doi.org/10.1002/pen.24926
  12. Analysis of Fouling Mechanism in Polysulfone based Ultrafiltration Membrane during Peat Water Filtration vol.1090, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1090/1/012052
  13. Flory-Huggins Based Model to Determine Thermodynamic Property of Polymeric Membrane Solution vol.1090, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1090/1/012074
  14. Prospect and Challenges of Tight Ultrafiltration Membrane in Drinking Water Treatment vol.395, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/395/1/012012
  15. The Influence of Operating Parameters on Membrane Performance in Used Lube Oil Processing vol.395, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/395/1/012018
  16. Recent progress and challenges in membrane-based O2/N2 separation vol.0, pp.0, 2019, https://doi.org/10.1515/revce-2017-0094
  17. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127 vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.15077.1
  18. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127 vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.15077.2
  19. Superhydrophobic membrane: progress in preparation and its separation properties vol.35, pp.2, 2019, https://doi.org/10.1515/revce-2017-0030
  20. Combined ultrafiltration-electrodeionization technique for production of high purity water vol.75, pp.12, 2017, https://doi.org/10.2166/wst.2017.173
  21. Modified membrane with antibacterial properties vol.8, pp.5, 2017, https://doi.org/10.12989/mwt.2017.8.5.463
  22. Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane vol.9, pp.5, 2018, https://doi.org/10.12989/mwt.2018.9.5.353
  23. Modification of PVC Membrane for Humic Substance Removal in Peat Water vol.1477, pp.None, 2015, https://doi.org/10.1088/1742-6596/1477/5/052014
  24. Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.131