References
- Barer RM. 1978. Zeolites and Clay Minerals as Sorbent and Molecular Sieves. Academic Press, London-New York.
- Breck DW. 1964. Crystalline molecular sieves. J. Chem. Educ. 12: 678. https://doi.org/10.1021/ed041p678
- Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D. 2006. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 135: 40-46. https://doi.org/10.1016/j.jhazmat.2005.11.058
- Dabrowski A, Hubicki Z, Podkooecielny P, Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56: 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006
- Erdem E, Karapinar N, Donat R. 2004. The removal of heavy metal cations by natural zeolites. J. C olloid I nterf. Sci. 280: 309-314. https://doi.org/10.1016/j.jcis.2004.08.028
- Hafez MB, Nazmy AF, Salem F, Eldesoki M. 1978. Fixation mechanism between zeolite and some radioactive elements. J. Radioanal. Nucl. Chem. 47: 115. https://doi.org/10.1007/BF02517161
- Inglezakis VJ, Loizidou MD, Grigoropoulou HP. 2003. Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interf. Sci. 261: 49-54. https://doi.org/10.1016/S0021-9797(02)00244-8
- Jong T, Parry DL. 2004. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides. J. Colloid Interf. Sci. 275: 61-71. https://doi.org/10.1016/j.jcis.2004.01.046
- Kadirvelu K, Thamaraiselvi K, Namasivayam C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 76: 63-65. https://doi.org/10.1016/S0960-8524(00)00072-9
- Kim SJ, Park KW, Hur BK. 2000. Characteristics of linoleic acid production by marine fungi in sea water media. Biotechnol. Bioeng. 15: 195-200.
- Kumar A, Bisht BS, Joshi VD, Dhewa T. 2011. Review on bioremediation of polluted environment: a management tool. Int. J. Environ. Sci. 1: 1079-1093.
- Kurniawan TA, Chan GY, Lo WH, Babel S. 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118: 83-98. https://doi.org/10.1016/j.cej.2006.01.015
- Lin SH, Juang RS, Hazard J. 2002. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 92: 315-326. https://doi.org/10.1016/S0304-3894(02)00026-2
- Muyzer G, Stams AJM. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6: 441-454.
- Okabe S, Nielsen PH, Charcklis WG. 1992. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol. Bioeng. 40: 725-734. https://doi.org/10.1002/bit.260400612
- Qdais HA, Moussa H. 2004. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164: 105-110. https://doi.org/10.1016/S0011-9164(04)00169-9
- Trivunac K, Stevanovic S. 2006. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 64: 486-491. https://doi.org/10.1016/j.chemosphere.2005.11.073
- Wu Y, Zhang S, Guo X, Huang H. 2008. Adsorption of chromium(III) on lignin. Bioresour. Technol. 99: 7709-7715. https://doi.org/10.1016/j.biortech.2008.01.069
Cited by
- A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents vol.14, pp.1, 2015, https://doi.org/10.3390/ijerph14010094
- Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/2568038
- Environmental sustainability: challenges and viable solutions vol.1, pp.4, 2015, https://doi.org/10.1007/s42398-018-00038-w
- Progress on the Photocatalytic Reduction Removal of Chromium Contamination vol.19, pp.5, 2019, https://doi.org/10.1002/tcr.201800153
- Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review vol.27, pp.2, 2015, https://doi.org/10.1007/s11356-019-06967-1
- Microbes used as a tool for bioremediation of heavy metal from the environment vol.6, pp.1, 2015, https://doi.org/10.1080/23311932.2020.1783174
- Optimization Study of Nickel and Copper Bioremediation by Microbacterium oxydans Strain CM3 and CM7 vol.29, pp.4, 2015, https://doi.org/10.1080/15320383.2020.1738335
- Exopolysaccharides from marine bacteria: production, recovery and applications vol.3, pp.2, 2020, https://doi.org/10.1007/s42398-020-00101-5
- Microalgae for saline wastewater treatment: a critical review vol.50, pp.12, 2020, https://doi.org/10.1080/10643389.2019.1656510
- Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer vol.10, pp.None, 2015, https://doi.org/10.1016/j.sciaf.2020.e00545
- Advances in Heavy Metal Bioremediation: An Overview vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/1609149
- Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches vol.275, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.129996
- Industrial wastewater purification through metal pollution reduction employing microbes and magnetic nanocomposites vol.9, pp.6, 2015, https://doi.org/10.1016/j.jece.2021.106673
- A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils vol.287, pp.p4, 2015, https://doi.org/10.1016/j.chemosphere.2021.132369