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Abstract

In this paper, we introduce the notion of single and set-valued maps satisfying OWC property
in IFMS using implicit relation. Also, we obtain common fixed point theorems for single and
set-valued maps satisfying OWC properties in IFMS using implicit relation.
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1. Introduction

Several authors [1–5] studied and developed the various concepts in different direction and
proved some fixed point in fuzzy metric space. Also, Jungck [6] introduced the concept of
compatible maps, and Vijayaraju and Sajath [7] obtained some common fixed point theorems
in fuzzy metric space. Recently, Park et.a.. [8] introduced the intuitionistic fuzzy metric space
(IFMS), Park [12, 13] studied the compatible and weakly compatible maps in IFMS, and
proved common fixed point theorem in IFMS. Also, Park [9] proved some properties for
several types compatible maps, and Park [10] defined occasionally weakly semi-compatible
map and obtained some fixed point using this maps in IFMS.

In this paper, we introduce the notion of single and set-valued maps satisfying occasionally
weakly compatible (OWC) property in IFMS using implicit relation. Also, we obtain common
fixed point theorems for single and set-valued maps satisfying OWC property in IFMS using
implicit relation.

2. Preliminaries

In this part, we recall some definitions, properties and known results in the IFMS as follows :
Let us recall ( [11]) that a continuous t−norm is an operation ∗ : [0, 1]× [0, 1]→ [0, 1] which
satisfies the following conditions: (a)∗ is commutative and associative, (b)∗ is continuous,
(c)a ∗ 1 = a for all a ∈ [0, 1], (d)a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).
Also, a continuous t−conorm is an operation � : [0, 1] × [0, 1] → [0, 1] which satisfies the
following conditions: (a)� is commutative and associative, (b)� is continuous, (c)a � 0 = a for
all a ∈ [0, 1], (d)a � b ≥ c � d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Definition 2.1. ([8]) The 5−tuple (X,M,N, ∗, �) is said to be an intuitionistic fuzzy metric
space (IFMS) if X is an arbitrary set, ∗ is a continuous t−norm, � is a continuous t−conorm
and M,N are fuzzy sets on X2 × (0,∞) satisfying the following conditions; for
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all x, y, z in X and all s, t ∈ (0,∞),

(a)M(x, y, t) > 0,

(b)M(x, y, t) = 1 if and only if x = y,

(c)M(x, y, t) = M(y, x, t),

(d)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(e)M(x, y, ·) : (0,∞)→ (0, 1] is continuous,

(f)N(x, y, t) > 0,

(g)N(x, y, t) = 0 if and only if x = y,

(h)N(x, y, t) = N(y, x, t),

(i)N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s),

(j)N(x, y, ·) : (0,∞)→ (0, 1] is continuous.

Note that (M,N) is called an IFM on X . The functions
M(x, y, t) and N(x, y, t) denote the degree of nearness and
the degree of non-nearness between x and y with respect to t,
respectively

Through out this paper, X will represent the IFMS and
CB(X), the set of all non-empty closed and bounded subsets
of X . For A,B ∈ CB(X) and for every t > 0, denote

H(A,B, t) = sup{M(a, b, t); a ∈ A, b ∈ B},

h(A,B, t) = inf{N(a, b, t); a ∈ A, b ∈ B},

δM (A,B, t) = inf{M(a, b, t); a ∈ A, b ∈ B},

δN (A,B, t) = sup{N(a, b, t); a ∈ A, b ∈ B}.

If A consists of a single point a, we write

δM (A,B, t) = δM (a,B, t), δN (A,B, t) = δN (a,B, t).

Furthermore, if B consists of a single point b, we write

δM (A,B, t) = M(a, b, t), δN (A,B, t) = N(a, b, t).

It follows immediately from definition that

δM (A,B, t) = δM (B,A, t) ≥ 0,

δN (A,B, t) = δN (B,A, t) ≤ 1.

Also, δM (A,B, t) = 1 and δN (A,B, t) = 0 if and only if
A = B = {a} for al A,B ∈ CB(X).

Definition 2.2. Let X be an IFMS, A : X → X and B : X →
CB(X).

(a) A point x ∈ X is called a coincidence point of hybrid
maps A and B if x = Ax ∈ Bx.

(b) Hybrid mapsA andB are said to be compatible ifABx ∈

CB(X) for all x ∈ X and

lim
n→∞

H(ABxn, BAxn, t) = 1,

lim
n→∞

h(ABxn, BAxn, t) = 0

whenever {xn} is a sequence in X such that Bxn → D ∈
CB(X) and Axn → x ∈ D.

(c) Hybrid maps A and B are said to be weakly compatible
if ABx = BAx whenever Ax ∈ Bx.

(d) Hybrid maps A and B are said to be occasionally weakly
compatible (OWC) if there exists some points x ∈ X such that
Ax ∈ Bx and ABx ⊆ BAx.

Example 2.3. Let X = [0,∞) with a∗b = min{a, b}, a�b =

max{a, b} for all a, b ∈ [0, 1] and for all t > 0,

M(x, y, t) =
t

t+ d(x, y)
, N(x, y, t) =

d(x, y)

t+ d(x, y)
.

Define the maps A : X → X and B : X → CB(X) by

Ax =

{
0 if 0 ≤ x < 1,

x+ 1 if 1 ≤ x <∞,

Bx =

{
{0} if 0 ≤ x < 1,

[1, x+ 3] if 1 ≤ x <∞.

Here 1 is a coincidence point of A and B, but A and B are
not weakly compatible as BA(1) = [1, 5] 6= AB(1) = [2, 5].
Also, A and B are OWC hybrid maps as A and B are weakly
compatible at x = 0 as A(0) ∈ B(0) and 0 = AB(0) ⊆
BA(0) = {0}. Hence weakly compatible hybrid maps are
OWC, but the converse is not true in general.

3. Main Results

Theorem 3.1. Let X be an IFMS with t ∗ t = t and t � t = t

for all t ∈ [0, 1]. Also, let A,B : X → X and S, T : X →
CB(X) be single and set-valued mappings such that the hybrid
pairs (A,S) and (B, T ) are OWC satisfying

φ{δM (Sx, Ty, t),M(Ax,By, t),

H(Ax, Sx, t), H(By, Ty, t),

H(Ax, Ty, t) ∗H(By, Sx, t)} ≥ 0 (1)

ψ{δN (Sx, Ty, t), N(Ax,By, t),

h(Ax, Sx, t), h(By, Ty, t),

h(Ax, Ty, t) � h(By, Sx, t)} ≤ 1
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for every x, y ∈ X , t > 0.
Also, let implicit relation Φ = {φ, ψ} such that φ : [0, 1]5 →

[0, 1] and ψ : [0, 1]5 → [0, 1] continuous functions satisfying
(a) φ(t1, t2, t3, t4, t5) is non-increasing in t2 and t5 for all

t > 0. ψ(t1, t2, t3, t4, t5) is non-decreasing in t2 and t5 for all
t > 0.

(b) φ(t, t, 1, 1, t) ≥ 0 implies that t = 1, andψ(t, t, 0, 0, t) ≤
1 implies that t = 0 for all t > 0.

Then A,B, S and T have a unique common fixed point in
X .

Proof Since the hybrid pairs (A,S) and (B, T ) are OWC maps,
there exist two elements u, v ∈ X such that Au ∈ Su, ASu ⊆
SAu and Bv ∈ Tv, BTv ⊆ TBv.

First, we prove that Au = Bv. As Au ∈ Su and Bv ∈ Tv,
so,

M(Au,Bv, t) ≥ δM (Su, Tv, t),

M(Au, Tv, t) ≥ δM (Su, Tv, t),

M(Bv, Su, t) ≥ δM (Su, Tv, t),

N(Au,Bv, t) ≤ δN (Su, Tv, t),

N(Au, Tv, t) ≤ δN (Su, Tv, t),

N(Bv, Su, t) ≤ δN (Su, Tv, t).

If Au 6= Bv, then δM (Su, Tv, t) < 1 and δN (Su, Tv, t) >

0. Using (1) for x = u and y = v, we have

φ{δM (Su, Tv, t),M(Au,Bv, t), 1, 1,

M(Au, Tv, t) ∗M(Su,Bv, t)} ≥ 0

ψ{δN (Su, Tv, t), N(Au,Bv, t), 0, 0,

N(Au, Tv, t) �N(Su,Bv, t)} ≤ 1.

That is,

φ{δM (Su, Tv, t), δM (Su, Tv, t),

1, 1, δM (Su, Tv, t)} ≥ 0

ψ{δN (Su, Tv, t), δN (Au,Bv, t),

0, 0, δN (Au, Tv, t)} ≤ 1.

Also, φ, ψ satisfies (b), so

δM (Su, Tv, t) = 1 and δN (Su, Tv, t) = 0.

This is a contradiction which gives Au = Bv

Now, we prove that A2u = Au. Suppose that A2u 6= Au,
then δM (SAu, Tv, t) < 1 and δN (SAu, Tvt) > 0. Also,

using (1) for x = Au and y = v, we get

φ{δM (SAu, Tv, t),M(AAu,Bv, t), 1, 1,

M(AAu, Tv, t) ∗M(SAu,Bv, t)} ≥ 0

ψ{δN (SAu, Tv, t), N(AAu,Bv, t), 0, 0,

N(AAu, Tv, t) �N(SAu,Bv, t)} ≤ 1.

Also, Au ∈ Su and ASu ∈ SAu, so AAu ∈ ASu ⊆ SAu,
Bv ∈ Tv and BTv ⊆ TBv, hence

M(AAu,Bv, t) ≥ δM (SAu, Tv, t),

M(Bv, SAu, t) ≥ δM (SAu, Tv, t),

N(AAu,Bv, t) ≤ δN (SSA, Tv, t),

N(Bv, SAu, t) ≤ δN (SAu, Tv, t).

Therefore

φ{δM (SAu, Tv, t), δM (SAu, Tv, t),

1, 1, δM (SAu, Tv, t)} ≥ 0

ψ{δN (SAu, Tv, t), δN (SAu, Tv, t),

0, 0, δN (SAu, Tv, t)} ≤ 1.

But φ, ψ satisfies (b), so,

δM (SAu, Tv, t) = 1 and δN (SAu, Tv, t) = 0,

a contradiction and hence A2u = Au = Bv. Similarly, we can
show that B2v = Bv.

Let Au = Bv = z, then Az = z = Bz, z ∈ Sz and z ∈ Tz.
Therefore z is a fixed point of A,B, S and T .

Finally, we prove the uniqueness of the fixed point. Let
z 6= z0 be another fixed point of A,B, S and T , then by (1), we
have,

φ{δM (Sz, Tz0, t), δM (Az, Tz0, t), 1, 1,

δM (Az, Tz0, t) ∗ δM (Sz, Tz0, t)} ≥ 0

ψ{δN (Sz, Tz0, t), δ
N (Az, Tz0, t), 0, 0,

δN (Az, Tz0, t) � δN (Sz, Tz0, t)} ≤ 1.

From (b), we get

δM (Sz, Tz0, t) = 1, δN (Sz, Tz0, t) = 0.

This is a contradiction. Hence z = z0. Therefore z is unique
common fixed point of A,B, S and T .
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Example 3.2. Let X be an IFMS in which X = R+, a ∗ b =

min{a, b} and a � b = max{a, b} for all a, b ∈ [0, 1] such that
for all t > 0,

M(x, y, t) =
t

t+ d(x, y)
, N(x, y, t) =

d(x, y)

t+ d(x, y)
.

Define the maps A,B, S and T on X by

Ax =

{
2x− 1 if x ≤ 5,

2x if x > 5,

Bx =

{
3− 2x if x ≤ 1,

x+ 1 if 1 > x,

Sx =

{
{1} if x < 2,

[2x, 2x+ 5] if x ≥ 2,

Tx =

{
{1} if x = 1,

[x, x+ 2] if otherwise.

Define φ : [0, 1]→ [0, 1], ψ : [0, 1]→ [0, 1] as

φ(t1, t2, t3, t4, t5) = min{t1, t2, t3, t4, t5},

ψ(t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5}.

Here the pairs (A,S) and (B, T ) are OWC and the contractive
condition is satisfied. Hence 1 is a unique common fixed point
of A,B, S and T .

Corollary 3.3. Let X be an IFMS, t ∗ t = t and t � t = t for
all t ∈ [0, 1] and let A : X → X and S, T : X → CB(X) be
single and set-valued mappings such that the hybrid pair (A,S)

and (A, T ) are OWC satisfying

φ{M(Sx, Ty, t),M(Ax,Ay, t),

H(Ax, Sx, t), H(Ay, Ty, t),

H(Ax, Sy, t) ∗H(Ay, Sx, t)} ≥ 0

ψ{N(Sx, Ty, t), N(Ax,Ay, t),

h(Ax, Sx, t), h(Ay, Ty, t),

h(Ax, Sy, t) � h(Ay, Sx, t)} ≤ 1

for every x, y ∈ X , t > 0 and φ, ψ are satisfies (a) and (b),
respectively in Theorem 3.1. Then A,S and T have a unique
common fixed point in X .

Proof Suppose that A = B in Eq. (1) of Theorem 3.1, then we
get this corollary.

Corollary 3.4. Let X be an IFMS, t ∗ t = t and t � t = t for
all t ∈ [0, 1] and let A : X → X and S : X → CB(X) be
single and set-valued mappings such that the hybrid pair (A,S)

is OWC satisfying

φ{δM (Sx, Sy, t),M(Ax,Ay, t),

H(Ax, Sx, t), H(Ay, Sy, t),

H(Ax, Sy, t) ∗H(Ay, Sx, t)} ≥ 0

ψ{δN (Sx, Sy, t), N(Ax,Ay, t),

h(Ax, Sx, t), h(Ay, Sy, t),

h(Ax, Sy, t) � h(Ay, Sx, t)} ≤ 1

for every x, y ∈ X , t > 0 and φ, ψ are functions satisfying (a)
and (b), respectively in Theorem 3.1. Then A and S have a
unique common fixed point in X .

Proof Suppose that A = B and S = T in Eq. (1) of Theorem
3.1, then we get this corollary.

4. Conclusion

Park et.al. [8] introduced the IFMS, and proved common fixed
point theorem in IFMS. Also, Park [9] proved some properties
for several types compatible maps, and Park [10] defined occa-
sionally weakly semi-compatible map and obtained some fixed
point using this maps in IFMS.

In this paper, we introduce the notion of single and set-valued
maps satisfying OWC property in IFMS using implicit relation.
Also, we obtain common fixed point theorems for single and set-
valued maps satisfying OWC property in IFMS using implicit
relation.
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