
Computational Thinking 능력이 소프트웨어 개발에 미치는 영향에 관한 연구 45

 †정 회 원: 성균관대학교 교과교육학과 컴퓨터교육전공 박사수료
 ††종신회원: 성균관대학교 교과교육학과 교수(교신저자)
 논문접수: 2015년 7월 22일, 심사완료: 2015년 8월 16일, 게재확정: 2015년 9월 18일

Computational Thinking 능력이

소프트웨어 개발에 미치는 영향에 관한 연구

박성빈† ․ 안성진††

요 　 약

최근 정부와 산업계에서는 국가경쟁력의 핵심요소로 강조되고 있는 소프트웨어의 경쟁력을 강화해야

한다는 요구가 증가하고 있으며 이를 위해서는 소프트웨어를 개발하는 소프트웨어 개발자들의 직무능력

향상이 필요하다고 할 수 있다. 본 연구결과 창의적 문제해결방법인 Computational Thinking이 소프트

웨어 개발자들의 직무능력 향상에 긍정적인 영향을 준다는 점과 기존연구결과와는 다르게 소프트웨어

개발이라는 업무적 특성으로 인해 simulation, algorithms & procedures, parallelization 등이 소프트웨어

개발자들에게 영향력 있는 요소로 나타났으며 직무능력 향상을 위해서는 이에 대한 교육이 강조될 필요

가 있다. 이중에서 특히 simulation이 가장 큰 영향을 주기에 이에 대한 강화가 필요하다고 할 수 있다.

주제어 : Computational Thinking, 소프트웨어 개발자, 직무능력향상, 시뮬레이션

A Study on the Effectiveness of Computational Thinking

Ability on Software Development

Seongbean Park† ․ Seongjin Ahn††

ABSTRACT

There has been rising demand within the South Korean government and among various

industries in recent years on the need for strengthening the competitiveness of the software

industry, which they highlight as being a core element for national competitiveness. This strategy

would require enhancing the job competency of software developers. This study’s results show

that computational thinking (CT), which is one of the more creative solutions to the problem, has a

positive effect on the enhancement of software developers’ job competency. Furthermore, the study

finds that the software development tasks of simulation, algorithms and procedures, and

parallelization (in that order) serve as influential elements for software developers, which differs

from previous studies’ findings. The South Korean government thus should emphasize education in

these areas in order to enhance the nation’s job competence. Because simulation, especially, has

the greatest influence among these areas, there is a particular need to strengthen that area.

Keywords : Computational Thinking, Software developer, Job Competency, Simulation

46 한국컴퓨터교육학회 논문지 제18권 제5호(2015.9)

1. Introduction

In the current digital generation, software

(SW) is variously used in people’s daily lives

as well as by different industries. SW is used

in PCs and smart phones, and is utilized in

automobiles, aircraft, and countless other

scenarios. As the usage of software rises, its

competitiveness has been recognized as a key

element of manufacturing, which shows the

importance of the SW industry even more[1].

Because SW is developed by humans,

training experts is an important challenge for

industry; education is essential for successfully

carrying out such a task.

Consequently, there has been a trend for

strengthening software education, along with

the software coding frenzy that has spread

across the globe[2]. In developed countries such

as the United States, the United Kingdom, and

Japan, software education is now provided as

mandatory education for students; each

government has created and offers

software-related curricula[1][2]. The United

States is considered to be the leading country

in software education[1].

 South Korea recognizes “software as the

key factor driving national competitiveness in

the creative economy of the twenty-first

century.” The national strengthening of the

SW industry, which is falling behind in global

competition, needs to take place by expanding

into different industries, fields of sciences, and

society, as these are the creators of industrial

innovation and values. The government has

introduced policies for the “realization of a

software-driven society ”; and for education

and training that will lead to a “convergent”

society, several studies have been conducted on

the application of Computational Thinking (CT)

to the education curriculum[3][4][5][6][7][8].

Through these processes, CT-related studies

consider programming to be the most effective

activity for enhancing CT. Several empirical

studies have been conducted to actively

support these suggestions. In particular, an

increasing number of studies have focused on

developing evaluation tools for CT (and

programming to enhance the same)[9][10], but

they are limited by the fact that these studies

targeted students (i.e., not practitioners) in the

education process.

 Furthermore, SW education and industry

expert trainings by universities and their

faculty members are systematically promoted

according to the standards and guidelines of

South Korea’s National Competency Standards

(NCS)[11]. There is a limitation, however,

because they are configured based on

programming, without an understanding of

computer science in general.

 Therefore, two objectives will be discussed

in this study. First, this study targets software

developers in the lower seven job categories

among the NCS’s defined information

technology (IT) development job “families” to

determine if CT competency has a positive

effect on enhancing job competency in carrying

out a given task. In this study, the previous

study target of students is expanded to include

general software developers. Second, this study

aims to determine if job competence can be

enhanced by including advanced competency of

CT into the existing education curriculum,

which is only based on programming. This

should serve as a useful resource for the

development of software-related human

resources (HR).

Computational Thinking 능력이 소프트웨어 개발에 미치는 영향에 관한 연구 47

2. Theoretical Background

2.1 Computational Thinking

Wing (2008) suggested that CT can be

defined as thinking like a computer scientist—
such as in problem-solving activities, according

to the basic concepts and rules of computer

science—and it is a key concept for

understanding system architecture and human

behaviors. CT includes recursive thinking,

abstract thinking, proactive thinking, procedural

thinking, logical thinking, simultaneous thinking,

analytical thinking, and strategic thinking[6].

CT is a repetitive, recursive form of thinking

in which the solution to a complex and difficult

problem is restructured into another already

known problem through methods such as

simulation. It uses abstract analytical thinking

when solving very difficult problems, or

building complex system architectures. From

the perspective of preventing the worst

situations through prevention, protection, error

elimination, damage prevention, and repetition, it

uses logical and procedural thinking, which is

also a heuristic thinking method for quickly

finding solutions. CT is a cognitive and

justified tool that is obtained by fusing and

complexifying the broad fields of computer

science[6].

Furthermore, CT can be distinguished into

the following nine competencies : 1) data

collection, 2) data analysis, 3) data

representation, 4) problem decomposition, 5)

abstraction, 6) algorithms and procedures, 7)

automation, 8) simulation, and 9)

parallelization[5][6][12].

2.2 Software Developers

The environment of the software industry

has rapidly changed in recent years; the

technology and users’ requests for software

have become both complicated and diverse. The

quality of HR that the industry needs has thus

correspondingly become more specialized and

diverse, as well. The support for

software-related HR has not been provided

smoothly, however, and there is no standard for

systematic support of their growth. As such,

there is a need for the input, growth, and

cultivation of software-related HR[13][14].

The NCS was created as a national standard

according to these needs. It was systematized

by using the knowledge and technology that

are required for performing tasks in industrial

sites, according to various industry sectors and

levels[11].

The SW development portion of the NCS

was based on SW job competency standards, in

which the job families of “IT services,”

“packaged SW,” and “embedded SW” were

combined into the job family of “IT

development.” These were further categorized

into seven jobs according to their functional

aspects, as shown in Table 1. As a result,

employees in the job family of “IT

development,” according to the NCS, can be

considered to be software developers[11][15].

Category Divition
Section

(Job Family)
Subsection(Job)

20. ICT 01. IT
02. IT

Development

01. SW Architecture

02. Application SW

 Engineering

03. Embedded SW

 Engineering

04. Database

 Engineering

05. Network Engineering

06. Security Engineering

07. UI/UX Engineering

* Source : National Competency Standards(NCS)

<Table 1> NCS Classification System
(Information Technology Section Criteria)

48 한국컴퓨터교육학회 논문지 제18권 제5호(2015.9)

2.3 Relationship between Computational

Thinking and Software Developers

Computer sciences researchers have recently

defined CT as the fundamental cognitive ability

for problem-solving in all academic areas,

which is the most useful cognitive ability for

solving complex, real-life problems. CT is

cognitive ability that includes the understanding

of problem-solving according to the basic

concepts and principles of computer sciences,

system architecture, and human behaviors. It

can be strengthened by utilizing automatic

performances through various computing

devices; it also includes the ability to select

and utilize appropriate computing devices to

automatize abstraction abilities and abstract

concepts in order to select and construct

appropriate abstractive concepts for

problem-solving[16].

Many previous studies have selected

programming as the most effective activity for

CT[9][10].

In other words, as a problem-solving ability

based on the concepts and principles of

computer sciences, CT can produce strategic

knowledge that can be applied to common

problem-solving situations; it is the ability to

execute and automatize abstractive concepts or

problem-solving strategies with the use of

various computing devices. As such, the

problem-solving abilities demanded by society

can be expected to be enhanced by learning

CT[16][17].

According to previous studies, because

problems can be understood through abstraction

and the automation of CT—and the necessary
solutions can be provided for problem-solving

in SW development—job performances in SW

development can be expected to increase in the

future[6].

3. Study Design

3.1 Research Target and Model

This study targeted 169 employees in the

lower seven jobs of the IT development job

family, as defined by the NCS . The survey

was conducted over five days, from March 5th

to March 9th of 2015. The questionnaires from

ten participants were excluded from this study

because they were not employed in the job

family of IT development. Therefore, a total of

159 questionnaires were included in the

analysis. The demographic analysis of the

collected data is shown in Table 2.

Furthermore, in order to determine the

sub-competencies of CT—which are necessary

for performing each job in the IT development

field—a research model was constructed, with

the independent variable set as the

sub-competency of CT and the dependent

variable set as the amount of CT needed for

job performances.

(N=159)

Division Items Frequency %

Work

Experience

Less than 3 years 26 16.4

3-6 years 32 20.1

7-9 years 31 19.5

10-12 years 21 13.2

13 years and above 49 30.8

Job Duty

SW Architecture 41 25.8

 Application SW

Engineering
62 39.0

Embedded SW Engineering 4 2.5

Database Engineering 13 8.2

Network Engineering 8 5.0

Security Engineering 13 8.2

UI/UX Engineering 18 11.3

<Table 2> General Characteristics of Subjects

Computational Thinking 능력이 소프트웨어 개발에 미치는 영향에 관한 연구 49

3.2 Validity and Reliability Analysis of

Measurement Tools

The objective of this study is to find the

necessary level of CT for the job performance

of software developers in order to suggest

implications for the enhancement of their

ability. The data was collected and the

investigation tools were configured to find

relationships between the job family of the IT

development field, as defined by the NCS, and

the sub-competencies of CT. Both the validity

and the reliability of the survey questions were

analyzed to examine the effectiveness of the

investigation tool. In order to test the validity

of the measured questions, an exploratory

factor analysis was performed to find

unidimensionality for the questions regarding

the competencies comprising CT in each IT

development job. A Cronbach’s α value was

utilized to test for reliability in order to test the

internal consistency of the measurement tool in

the reliability analysis.

The results of the exploratory factor analysis

and the reliability analysis are shown in Table

3. First, the exploratory factor analysis found

that it was loaded as a single factor for each

job in the IT development field . The load

value was shown to be at least above 0.501,

and the variance ratio (which indicates

explanatory power) was shown to be at least

above 42.4 percent. In addition, the Cronbach’s

α value was shown to be at least above 0.847

as a result of the reliability test. The validity

and reliability of the survey questions thus

were shown to be good, and they were used in

the analysis.

4. Empirical Analysis

4.1 Analysis Method

In this study, multiple regression analysis

was performed to determine the CT

sub-competencies needed for the performance of

each job in the IT development field.

The conformity assessment used for the

regression model was as follows. The ratio for

Division

Loadings

SW

Arch

itect

ure

Appli

cation

SW

Engin

eerin

g

Embe

dded

SW

Engin

eerin

g

Datab

ase

Engin

eerin

g

Net

work

Engi

neeri

ng

Secu

rity

Engi

neeri

ng

UI/U

X

Engi

neeri

ng

Data

Collection
0.649 0.654 0.667 0.728 0.725 0.724 0.686

Data

Analysis
0.729 0.715 0.657 0.673 0.738 0.686 0.748

Data

Represent

ation

0.620 0.614 0.652 0.644 0.708 0.673 0.501

Problem

Decompo

sition

0.761 0.753 0.737 0.577 0.786 0.767 0.697

Abstracti

on
0.793 0.761 0.738 0.764 0.763 0.769 0.703

Algorith

ms &

Procedure

s

0.711 0.777 0.760 0.630 0.833 0.802 0.795

Automati

on
0.532 0.676 0.585 0.657 0.763 0.702 0.670

Simulatio

n
0.670 0.698 0.704 0.595 0.754 0.663 0.723

Paralleliz

ation
0.578 0.613 0.652 0.553 0.648 0.744 0.645

Computat

ional

Thinking

0.757 0.747 0.702 0.658 0.689 0.637 0.733

Eigenvalu

e
4.688 4.945 4.724 4.236 5.509 5.162 4.819

Variance

ratio(%)

46.88

4

49.44

9

47.24

2

42.35

6

55.08

8

51.61

6

48.19

0

Chronbac

h's α
0.871 0.885 0.875 0.847 0.909 0.895 0.879

<Table 3> Result of Exploratory Factor Analysis
and Reliability Analysis

50 한국컴퓨터교육학회 논문지 제18권 제5호(2015.9)

the sum of the regression square in the overall

sum of squares was determined as the

coefficient of determination, and was labeled

“R2.” The range for the coefficient of

determination is an error between 0 and 1.

Because the coefficient of determination is

closer to 1, this indicates that the explanatory

power is greater for explaining the change in

the dependent variables, according to the

independent variables of the multiple linear

regression model currently considered. The

F-test that appears in the variance analysis

table shows the overall change of the

dependent variables, which is shown by the

total sum of squares dissociated into the sum

of regression squared and the sum of squared

errors ; their relationship is summarized in the

table. By testing the significance of the

regression coefficient, whether or not each

independent variable is significant in explaining

the dependent variable can be tested.

Furthermore, the significance of the regression

model itself that the current researcher is

considering can be tested through the variance

analysis table.

 In order to examine if the multiple linear

regression model is valid (which was selected

to explain the relationship between the

explanatory variable and the response variable),

and to determine how much this relationship is

sufficiently explained, the total sum of squares,

which shows the overall change, was divided

into the sum of regression squared and the

sum of the squared errors . The relationship

summarized thus is the calculation method for

finding the p value according to variance

analysis. The hypothesis of this study was

tested based on this multiple regression

analysis model.

4.2 Sub-Competency for Each Job Affecting

CT

The results of the regression analysis are

shown in Table 4. The regression models, with

the dependent variables being the overall CT

that is needed for job performances, were all

analyzed as being statistically significant, as

follows: SW architecture (R2=0.486, F=15.670,

p<0.001), application SW engineering (R2=0.490,

F=15.907, p<0.001), embedded SW engineering

(R2=0.420, F=11.993, p<0.001), database

engineering (R2=0.401, F=11.063, p<0.001),

network engineering (R2=0.395, F=10.809,

p<0.001), security engineering (R2=0.356,

F=9.156, p<0.001), and user interface / user

experience (UI/UX) engineering (R2=0.487,

F=15.738, p<0.001).

The observations for the sub-competencies

that affect the necessary level of overall CT for

each job were as follows: first, in the overall

CT needed for job performance of SW

architecture, the competencies of abstraction

(B=0.170, t=2.189, p<0.05), algorithms and

procedures (B=0.163, t=2.439, p<0.05), and

simulation (B=0.217, t=3.002, p<0.01) were

shown to have statistically significant positive

effects.

Second, in the overall CT needed for job

performance of SW engineering, only the

simulation competency (B=0.264, t=3.135, p<0.01)

was shown to have a statistically significant

positive effect.

Third, in the overall CT needed for job

performance of embedded SW engineering, the

competencies of algorithms and procedures

(B=0.176, t=2.200, p<0.05) and simulation

(B=0.296, t=3.624, p<0.001) were shown to have

statistically significant positive effects.

Fourth, in the overall CT needed for job

performance of database engineering, the

competencies of abstraction (B=0.241, t=3.401,

Computational Thinking 능력이 소프트웨어 개발에 미치는 영향에 관한 연구 51

p<0.001), simulation (B=0.215,t=3.304, p<0.001),

and parallelization (B=0.153, t=2.204, p<0.05)

were shown to have positive effects, but data

representation (B=-0.164, t=-2.288, p<0.01) was

shown to have a significantly negative effect.

In addition, among the sub-competencies, the

abstraction competency was shown to have the

greatest effect.

Fifth, in overall CT needed for job

performance of network engineering, no

sub-competencies had significant effects at the

significance level of 5 percent. At the

significance level of 10 percent, however, the

following competencies were shown to have

significantly positive effects: data collection

(B=0.146, t=1.669, p<0.1), automation (B=0.147,

t=1.852, p<0.1), and simulation (B=0.143, t=1.679,

p<0.1). Among these, the effect of automation

competency was shown to be relatively higher.

Sixth, in overall CT needed for job

performance of security engineering, the

competencies of automation (B=0.147, t=2.048,

p<0.05), simulation (B=0.191, t=2.314, p<0.05),

and parallelization (B=0.199, t=2.228, p<0.05)

were shown to have significantly positive

effects. Among these, the effect of simulation

Division

Dependent Variable

SW

Architecture

App. SW

Engineering

Embedded SW

Engineering

Database

Engineering

Network

Engineering

Security

Engineering

UI/UX

Engineering

B
t-valu

e
B

t-valu

e
B

t-valu

e
B

t-valu

e
B

t-valu

e
B

t-valu

e
B

t-valu

e

Constant 0.692* 2.103 0.484 1.433 0.883** 2.593 1.266*** 3.537 1.195*** 3.923 1.294*** 3.927 0.333 0.926

Data

collection
0.054 0.768 -0.109 -1.552 0.064 0.857 0.138 1.945 0.146 1.669 -0.013 -0.150 -0.078 -0.940

Data

analysis
0.104 1.327 0.153 1.898 -0.062 -0.752 0.116 1.513 0.135 1.557 0.095 1.092 -0.014 -0.147

Data

Represen

tation

-0.040 -0.630 0.105 1.523 0.120 1.610
-0.164*

*
-2.288 -0.040 -0.478 0.100 1.317 0.104 1.316

Problem

Decompo

sition

0.060 0.860 0.129 1.840 0.122 1.610 -0.059 -0.892 0.084 1.004 0.065 0.820 0.158* 2.078

Abstracti

on
0.170* 2.189 0.103 1.347 0.030 0.373 0.241*** 3.401 0.058 0.704 -0.160 -1.866 0.036 0.467

Algorith

ms &

Procedur

es

0.163* 2.439 0.151 1.840 0.176* 2.200 0.061 0.949 0.053 0.589 0.105 1.274 0.267** 3.231

Automati

on
0.111 1.707 0.106 1.559 0.024 0.321 0.022 0.331 0.147 1.852 0.147* 2.048 0.154* 2.086

Simulatio

n
0.217** 3.002 0.264** 3.135 0.296*** 3.624 0.215*** 3.304 0.143 1.679 0.191* 2.314 0.107 1.243

Paralleliz

ation
0.045 0.695 0.002 0.036 0.051 0.689 0.153* 2.204 0.014 0.191 0.199* 2.228 0.202* 2.213

R2 0.486 0.490 0.420 0.401 0.395 0.356 0.487

F-value(

p)
15.670***(0.000) 15.907***(0.000) 11.993***(0.000) 11.063***(0.000) 10.809***(0.000) 9.156***(0.000) 15.738***(0.000)

*p<0.05, **p<0.01, ***p<0.001

<Table 4> Sub-competency Effecting on the Need for Overall Computational Thinking

52 한국컴퓨터교육학회 논문지 제18권 제5호(2015.9)

competency was shown to be relatively higher.

Finally, in overall CT needed for job

performance of UI/UX engineering, the

competencies of problem analysis (B=0.158,

t=2.078, p<0.05), algorithms and procedures

(B=0.267, t=3.231, p<0.01), automation (B=0.154,

t=2.086, p<0.05), and parallelization (B=0.202,

t=2.213, p<0.05) were shown to have

significantly positive effects.

Among these effects, the effect of algorithms

and procedures was shown to be relatively

high. These study results do not highlight the

importance of abstraction and automation, which

previous studies on CT considered to be the

core abilities. These results are therefore quite

different from those of previous studies.

Interviews were conducted with a number of

the survey participants in order to investigate

the cause for these results; the interviews

found that these study results may be

attributed to the working patterns of software

developers. When software developers approach

their jobs, rather than analyzing by abstracting

and architecting the development target from

the beginning, they tend to be more focused on

increasing productivity. They may 1) receive

already abstracted analyses and architected

results; 2) recycle and reuse accumulated

experience, expertise, and outcomes from

previous job performances; and 3) receive

solutions from senior workers. Because they

performed simulation, which examines if

previous products may be applied to new jobs,

this sub-competence can be considered to be

more important than abstraction.

4.3 Relationship between CT and Software

Development Competencies

The regression analysis results shown in

Table 4 show that the sub-competencies of CT

have a positive effect on the enhancement of

job competence. Among the IT development job

family, as defined by the NCS, six jobs (with

the exclusion of network engineering) were

shown to have a significance level of 5 percent;

and all seven jobs in the IT development job

family were shown to have a significance level

of 10 percent. Therefore, CT is necessary for

the job competence enhancement of SW

developers. The sub-competencies needed for

each job were different; but the results of the

regression analysis show that the CT

sub-competencies with a significance level of 5

percent, which positively affected each job,

were shown in the following order: simulation

(five jobs), algorithms and procedures (three

jobs), and parallelization (three jobs). Figure 1

summarizes these study results.

<Figure 1> Sub-competency for Each Job
Effecting on Computational Thinking

5. Conclusion

This study found that CT is necessary for

enhancing the job competence of software

developers. Unlike previous studies, which

found abstraction and automation competencies

to be most important, this study found that

simulation, algorithms and procedures, and

parallelization were important, in that order, for

Computational Thinking 능력이 소프트웨어 개발에 미치는 영향에 관한 연구 53

the enhancement of software developers’ job

competence.

These study results are in line with

Moursund’s suggestion (2009) that for

problem-solving, the interactions between

various elements in the solution of a problem

should be considered, and it should be

conducted in a system through modeling or

simulation[7][18]. This also corresponds to the

objectives of “modeling and simulation” courses

that are currently being taught by prominent

universities abroad. The SW education

conducted in SW-related departments of

domestic universities, however, or in

software-related HR schools (including faculty

training), are oriented toward programming.

It thus is difficult to consider “modeling and

simulation” as an independent subject. This

study has shown that including “modeling and

simulation” courses in the software-related

departments of domestic universities, as well as

in software-related HR schools, could be

greatly effective in leading toward the

software-driven society that the South Korean

government aims for.

By studying the employees of the IT

development job family, this study has

determined that “modeling and simulation”

courses are necessary, although these study

results will also need to be verified through

more specific empirical research.

Reference

[1] Park, H. M. (2014). State of global software

education and trend of education tools.

Korea Internet & Security Agency.

[2] Park, M. U. (2014). State of domestic

education in programming and future of

the software industry. DIGIECO.

[3] Ministry of Science, ICT and Future

Planning(2013). Software (SW) innovation

strategy.

[4] Moon, G. S. (2013). On the Direction of the

Application of the Concepts of

Computational Thinking for Elementary

Education. International Journal of

Contents, 13(6).

[5] Korea Foundation for the Advancement of

Science & Creativity (2014). Research for

introducing Computational Thinking into

primary and secondary education.

[6] Kwon, J. I. (2014). A Study on the

Effectiveness of Computational Thinking

based Teaching and Learning on Students’

Creative Problem Solving Skills. Ph.D.

dissertation, Sungkunkwan University

Graduate, Seoul: Korea.

[7] Choi, S. Y. (2011). An Analysis of

"Informatics" Curriculum from the

Perspective of 21st Century Skills and

Computational Thinking. The Journal of

Korean Association of Computer Education,

14(6).

[8] Choi, J. W. (2015). Puzzle-Based Algorithm

Learning Model for Improving

Computational Thinking for Informatics

Gifted Students. Ph.D. dissertation,

Graduate School of Korea National

University of Education, Chung-Buk,

Korea.

[9] Kim, B. S. & Kim, J. H. (2012). The

Development and Implementation of an

Algorithm Instructional Material through

the Problem Solving on the KOI Final

Test of Elementary Students. JOURNAL

OF The Korean Association of information

Education, 16(1), 11-20.

[10] Lee, E. K. (2013). Computer Education

Curriculum and Instruction : Creative

Programming Learning with Scratch for

Enhancing Computational Thinking. The

Journal of Korean Association of Computer

Education, 16(1).

54 한국컴퓨터교육학회 논문지 제18권 제5호(2015.9)

[11] Koo, J. K. (2014). Understanding “National

Competency Standards” for constructing

conditions for ability-driven society.

Human Resources Development Service of

Korea.

[12] Computer Science Teachers Association

(2011). Computational Thinking in K-12

Education.

[13] Lee, B. M. (2008). SW job performance

standards overview. National IT Industry

Promotion Agency.

[14] Bae, Y. K. (2006). Robot programming

education model in ubiquitous environment

for enhancement of creative problem-solving

ability. Ph.D. dissertation, Graduate School

of Korea National University of Education,

Chung-Buk, Korea.

[15] National IT Industry Promotion

Agency(2012). SW Job Cometency

Standards.

[16] Lee, E. K. (2009). Robot Programming

Teaching and Learning Model to Enhance

Computational Thinking Ability. Ph.D.

dissertation, Graduate School of Korea

National University of Education,

Chung-Buk, Korea.

[17] Greg Michaelson (2015). Teaching

Programming with Computational and

Informational Thinking By Greg

Michaelson. School of Mathematical and

Computer Sciences, Heriot-Watt

University, 5(1).

[18] Moursund, D. (2009). Computational

Thinking. Retrieved from IAE-pedia.

박 성 빈

1998 중앙대학교 졸업(학사)

2007 중앙대학교대학원졸업(석사)

2011～현재 성균관대학교 대학원

 컴퓨터교육과 박사과정

관심분야: SW교육, Computational Thinking,

Software development

E-Mail: gerbera4@skku.edu

안 성 진

1988 성균관대학교

 정보공학과(학사)

1990 성균관대학교

 정보공학과(석사)

1998 성균관대학교 정보공학과(박사)

1990～1995 KIST/SERI 연구원

1996 정보통신기술사

1999～현재 성균관대학교 컴퓨터교육과 교수

관심분야: SW교육, 정보윤리, 정보보안

E-Mail: sjahn@skku.edu

