References
- Abitbol, T., Kloser, E., Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794. https://doi.org/10.1007/s10570-013-9871-0
- Barzyk, D., Page, D., Ragauskas, A. 1996. Acidic group topochemistry and fiber to fiber specific bond strength. IPST technical paper series 615.
- Benhamou, K., Dufresne, A., Magnin, A., Mortha, G., Kaddami, H. 2014. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydrate Polymers 99: 74-83. https://doi.org/10.1016/j.carbpol.2013.08.032
- Berglund, L.A., Peijs, T. 2010. Cellulose biocomposites - From bulk moldings to nanostructured systems. MRS Bulletin 35: 201-207. https://doi.org/10.1557/mrs2010.652
- Besbes, I., Alila, S., Boufi, S. 2011. Nanofibrillated cellulose from TEMPO-oxidized Eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers 84: 975-983. https://doi.org/10.1016/j.carbpol.2010.12.052
- Chang, P.S., Robyt, J.F. 1996. Oxidation of primary alcohol groups of naturally occuring polysaccharides with 2,2,6,6-tetramethyl-1-pipelidine oxoammonium ion. Carbohydrate Chemistry 15(7): 819-830. https://doi.org/10.1080/07328309608005694
- Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Mokchae Konghak 38(6): 587-601.
- Cho, M.J., Park, B.D. 2011. Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry 17(1): 36-40. https://doi.org/10.1016/j.jiec.2010.10.006
- Cho, M.J., Park, B.D., Kadla, J.F. 2012. Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Mokchae Konghak 40(2): 71-77.
- Dang, Z., Chang, J., Ragauskas, A.J. 2007. Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydrate Polymers 70(3): 310-317. https://doi.org/10.1016/j.carbpol.2007.04.014
- de Nooy, A.E.J., Besemer, A.C., van Bekkum, H. 1995. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research 269(1): 89-98. https://doi.org/10.1016/0008-6215(94)00343-E
- Dufresne, A. 2013. Nanocellulose: a new ageless bionanomaterial. Materials Today 16(6): 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
- Duran, N., Lemes, A.P., Duran, M., Freer, J., Baeza, J. 2011. A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. Journal of Chile Chemistry Society 56(2): 672-677. https://doi.org/10.4067/S0717-97072011000200011
- Emandi, A., Vasiliu, C.I., Budrugeac, P., Stamatin, I. 2011. Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellulose Chemistry Technology 45(9-10): 579-584.
- Filson, P.B., Dawson-Andoh, B.E., Schwegler-Berry, D. 2009. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry 11: 1808-1814. https://doi.org/10.1039/b915746h
- Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T., Isogai, A. 2011. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers 84(1): 579-583. https://doi.org/10.1016/j.carbpol.2010.12.029
- Fukuzumi, H., Saito, T., Okita, Y., Isogai, A. 2010. Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation and Stability 95(9): 1502-1508. https://doi.org/10.1016/j.polymdegradstab.2010.06.015
- Herrera, M.A., Mathew, A.P., Oksman, K. 2012. Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Materials Letters 71: 28-31. https://doi.org/10.1016/j.matlet.2011.12.011
- Isogai, A., Kato, Y. 1998. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3): 153-164. https://doi.org/10.1023/A:1009208603673
- Isogai, A., Saito, T., Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1): 71-85. https://doi.org/10.1039/C0NR00583E
- Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50(24): 5438-5466. https://doi.org/10.1002/anie.201001273
- Lasseuguette, E. 2008. Grafting onto microfibrils of native cellulose. Cellulose 15(4): 571-580. https://doi.org/10.1007/s10570-008-9200-1
- Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, H.T. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3): 302-305. https://doi.org/10.1002/smll.201001715
- Li, W., Wang, R., Liu, S. 2011. Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6(4): 4271-4281.
- Li, W., Yue, J., Liu, S. 2012. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrasonics Sonochemistry 19(3): 479-485. https://doi.org/10.1016/j.ultsonch.2011.11.007
- Masruchin, N., Park, B.D., Causin, V. 2015b. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. Journal of Industrial and Engineering Chemistry 29: 265-272. https://doi.org/10.1016/j.jiec.2015.03.034
- Masruchin, N., Park, B.D., Causin, V. Um, I.C. 2015a. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22(3): 1993-2010. https://doi.org/10.1007/s10570-015-0624-0
- Matuana, L.M., Balatinecz, J.J., Sodhi, R.N.S., Park, C.B. 2001. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology 35(3): 191-201. https://doi.org/10.1007/s002260100097
- Mihranyan, A. 2013. Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20(3): 1369-1376. https://doi.org/10.1007/s10570-013-9882-x
- Mishra, S.P., Manent, A.S., Chabot, B., Daneault, C. 2012. Production of nanocellulose from native cellulose-various options utilizing ultrasound. BioResources 7(1): 422-436.
- Mishra, S.P., Thirree, J., Manent, A.S., Chabot, B., Daneault, C. 2011. Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioResources 6(1): 121-143.
- Montanari, S., Roumani, M., Heux, L., Vignon, M.R. 2005. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5): 1665-1671. https://doi.org/10.1021/ma048396c
- Okita, Y., Saito, T., Isogai, A. 2010. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6): 1696-1700. https://doi.org/10.1021/bm100214b
- Oksman, K., Etang, J.A., Mathew, A.P., Jonoobi, M. 2011. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and Bioenergy 35(1): 146-152. https://doi.org/10.1016/j.biombioe.2010.08.021
- Paakko, M., Ankerfors, M., Kosonen, H., Nykaenen, A., Ahola, S., Oesterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstroem, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6): 1934-1941. https://doi.org/10.1021/bm061215p
- Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Science and Technology 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
- Plackett, D.V., Letchford, K., Jackson, J.K., Burt, H.M. 2014. A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp & Paper Research Journal 29(1): 105-118. https://doi.org/10.3183/NPPRJ-2014-29-01-p105-118
- Puangsin, B., Fujisawa, S., Kuramae, R., Saito, T., Isogai, A. 2013. TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymer Environment 21(2): 555-563. https://doi.org/10.1007/s10924-012-0548-9
- Qian, Y., Qin, Z., Vu, N.M., Tong, G., Chin, Y.C.F. 2012. Comparison of nanocrystals from TEMPO oxidation of bamboo, softwood and cotton linter fibers with ultrasonic-assisted process. BioResources 7(4): 4952-4964.
- Qin, Z.Y., Tong, G.L., Chin, Y.C.F., Zhou, J.C. 2011. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. BioResources 6(2): 1136-1146.
- Rattaz, A., Mishra, S.P., Chabot, B., Daneault, C. 2011. Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18(3): 585-593. https://doi.org/10.1007/s10570-011-9529-8
- Rodionova, G., Eriksen O., Gregersen, O. 2012. TEMPO-mediated cellulose nanofiber films: effect of surface morphology on water resistance. Cellulose 19(4): 1115-1123. https://doi.org/10.1007/s10570-012-9721-5
- Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5): 1983-1989. https://doi.org/10.1021/bm0497769
- Saito, T., Kimura, S., Nishiyama, Y, Isogai A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8): 2485-2491. https://doi.org/10.1021/bm0703970
- Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A. 2006. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6): 1687-1691. https://doi.org/10.1021/bm060154s
- Saito, T., Shibata, I., Isogai, A., Suguri, N., Sumikawa, N. 2005. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate Polymers 61(4): 414-419. https://doi.org/10.1016/j.carbpol.2005.05.014
- Sharma, P.R., Varma, A.J. 2014. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydrate Polymers 114: 339-343. https://doi.org/10.1016/j.carbpol.2014.08.032
- Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G. 2011. A comparative study of Eucalyptus and Pinus radiata pulp fibers as raw materials for production of cellulose nanofibrils. Carbohydrate Polymers 84(3): 1033-1038. https://doi.org/10.1016/j.carbpol.2010.12.066
- Tejado, A., Alam, Md.N, Antal, M., Yang, H., van de Ven, T.G.M. 2012. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3): 831-842. https://doi.org/10.1007/s10570-012-9694-4
- Tomihata, K., Ikada, Y. 1997. Crosslinking of hyaluronic acid with water-soluble carbodiimide. Journal Biomedical Materials Research 37(2): 243-251. https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<243::AID-JBM14>3.0.CO;2-F
- Uddin, K.M.A., Lokanathan, A.R., Liljestrom, A., Chen, X., Rojas, O.J., Laine, J. 2014. Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Materials 2(4): 183-192. https://doi.org/10.1680/gmat.14.00010
- Yang, H., Nur Alam Nd, van den Ven, T.G.M. 2013. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4): 1865-1875. https://doi.org/10.1007/s10570-013-9966-7
Cited by
- Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release vol.25, pp.1, 2018, https://doi.org/10.1007/s10570-017-1585-2
- Surface modification of TEMPO-oxidized cellulose nanofibrils for composites to give color change in response to pH level pp.1572-882X, 2018, https://doi.org/10.1007/s10570-018-2072-0