DOI QR코드

DOI QR Code

Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils

  • Masruchin, Nanang (Department of Wood and Paper Sciences, Kyungpook National University) ;
  • Park, Byung-Dae (Department of Wood and Paper Sciences, Kyungpook National University)
  • Received : 2015.08.10
  • Accepted : 2015.09.02
  • Published : 2015.09.25

Abstract

Simple methods of conductometric titration and infrared spectroscopy were used to quantify the surface carboxyl content of cellulose fibrils isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The effects of different cellulose sources, post or assisted-sonication oxidation treatment, and the amount of sodium hypochlorite addition on the carboxyl content of cellulose were reported. This study showed that post sonication treatment had no influence on the improvement of surface carboxyl charge of cellulose macrofibrils (CMFs). However, the carboxyl content increased for the isolated cellulose nanofibrils (CNFs). Thus the carboxyl content of CNFs is different from those of their corresponding bulk oxidized cellulose and CMFs. Filter paper as a CNF source imparted a higher surface charge than did hardwood bleached kraft pulp (HWBKP) and microcrystalline cellulose (MCC). It was considered that the crystallinity and microstructure of the initial cellulose affected oxidation efficiency. In addition, the carboxyl content of cellulose was successfully controlled by applying sonication treatment during the oxidation reaction and adjusting the amount of sodium hypochlorite.

Keywords

References

  1. Abitbol, T., Kloser, E., Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794. https://doi.org/10.1007/s10570-013-9871-0
  2. Barzyk, D., Page, D., Ragauskas, A. 1996. Acidic group topochemistry and fiber to fiber specific bond strength. IPST technical paper series 615.
  3. Benhamou, K., Dufresne, A., Magnin, A., Mortha, G., Kaddami, H. 2014. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydrate Polymers 99: 74-83. https://doi.org/10.1016/j.carbpol.2013.08.032
  4. Berglund, L.A., Peijs, T. 2010. Cellulose biocomposites - From bulk moldings to nanostructured systems. MRS Bulletin 35: 201-207. https://doi.org/10.1557/mrs2010.652
  5. Besbes, I., Alila, S., Boufi, S. 2011. Nanofibrillated cellulose from TEMPO-oxidized Eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers 84: 975-983. https://doi.org/10.1016/j.carbpol.2010.12.052
  6. Chang, P.S., Robyt, J.F. 1996. Oxidation of primary alcohol groups of naturally occuring polysaccharides with 2,2,6,6-tetramethyl-1-pipelidine oxoammonium ion. Carbohydrate Chemistry 15(7): 819-830. https://doi.org/10.1080/07328309608005694
  7. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Mokchae Konghak 38(6): 587-601.
  8. Cho, M.J., Park, B.D. 2011. Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry 17(1): 36-40. https://doi.org/10.1016/j.jiec.2010.10.006
  9. Cho, M.J., Park, B.D., Kadla, J.F. 2012. Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Mokchae Konghak 40(2): 71-77.
  10. Dang, Z., Chang, J., Ragauskas, A.J. 2007. Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydrate Polymers 70(3): 310-317. https://doi.org/10.1016/j.carbpol.2007.04.014
  11. de Nooy, A.E.J., Besemer, A.C., van Bekkum, H. 1995. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research 269(1): 89-98. https://doi.org/10.1016/0008-6215(94)00343-E
  12. Dufresne, A. 2013. Nanocellulose: a new ageless bionanomaterial. Materials Today 16(6): 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  13. Duran, N., Lemes, A.P., Duran, M., Freer, J., Baeza, J. 2011. A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. Journal of Chile Chemistry Society 56(2): 672-677. https://doi.org/10.4067/S0717-97072011000200011
  14. Emandi, A., Vasiliu, C.I., Budrugeac, P., Stamatin, I. 2011. Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellulose Chemistry Technology 45(9-10): 579-584.
  15. Filson, P.B., Dawson-Andoh, B.E., Schwegler-Berry, D. 2009. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry 11: 1808-1814. https://doi.org/10.1039/b915746h
  16. Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T., Isogai, A. 2011. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers 84(1): 579-583. https://doi.org/10.1016/j.carbpol.2010.12.029
  17. Fukuzumi, H., Saito, T., Okita, Y., Isogai, A. 2010. Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation and Stability 95(9): 1502-1508. https://doi.org/10.1016/j.polymdegradstab.2010.06.015
  18. Herrera, M.A., Mathew, A.P., Oksman, K. 2012. Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Materials Letters 71: 28-31. https://doi.org/10.1016/j.matlet.2011.12.011
  19. Isogai, A., Kato, Y. 1998. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3): 153-164. https://doi.org/10.1023/A:1009208603673
  20. Isogai, A., Saito, T., Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1): 71-85. https://doi.org/10.1039/C0NR00583E
  21. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50(24): 5438-5466. https://doi.org/10.1002/anie.201001273
  22. Lasseuguette, E. 2008. Grafting onto microfibrils of native cellulose. Cellulose 15(4): 571-580. https://doi.org/10.1007/s10570-008-9200-1
  23. Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, H.T. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3): 302-305. https://doi.org/10.1002/smll.201001715
  24. Li, W., Wang, R., Liu, S. 2011. Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6(4): 4271-4281.
  25. Li, W., Yue, J., Liu, S. 2012. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrasonics Sonochemistry 19(3): 479-485. https://doi.org/10.1016/j.ultsonch.2011.11.007
  26. Masruchin, N., Park, B.D., Causin, V. 2015b. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. Journal of Industrial and Engineering Chemistry 29: 265-272. https://doi.org/10.1016/j.jiec.2015.03.034
  27. Masruchin, N., Park, B.D., Causin, V. Um, I.C. 2015a. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22(3): 1993-2010. https://doi.org/10.1007/s10570-015-0624-0
  28. Matuana, L.M., Balatinecz, J.J., Sodhi, R.N.S., Park, C.B. 2001. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology 35(3): 191-201. https://doi.org/10.1007/s002260100097
  29. Mihranyan, A. 2013. Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20(3): 1369-1376. https://doi.org/10.1007/s10570-013-9882-x
  30. Mishra, S.P., Manent, A.S., Chabot, B., Daneault, C. 2012. Production of nanocellulose from native cellulose-various options utilizing ultrasound. BioResources 7(1): 422-436.
  31. Mishra, S.P., Thirree, J., Manent, A.S., Chabot, B., Daneault, C. 2011. Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioResources 6(1): 121-143.
  32. Montanari, S., Roumani, M., Heux, L., Vignon, M.R. 2005. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5): 1665-1671. https://doi.org/10.1021/ma048396c
  33. Okita, Y., Saito, T., Isogai, A. 2010. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6): 1696-1700. https://doi.org/10.1021/bm100214b
  34. Oksman, K., Etang, J.A., Mathew, A.P., Jonoobi, M. 2011. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and Bioenergy 35(1): 146-152. https://doi.org/10.1016/j.biombioe.2010.08.021
  35. Paakko, M., Ankerfors, M., Kosonen, H., Nykaenen, A., Ahola, S., Oesterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstroem, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6): 1934-1941. https://doi.org/10.1021/bm061215p
  36. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Science and Technology 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  37. Plackett, D.V., Letchford, K., Jackson, J.K., Burt, H.M. 2014. A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp & Paper Research Journal 29(1): 105-118. https://doi.org/10.3183/NPPRJ-2014-29-01-p105-118
  38. Puangsin, B., Fujisawa, S., Kuramae, R., Saito, T., Isogai, A. 2013. TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymer Environment 21(2): 555-563. https://doi.org/10.1007/s10924-012-0548-9
  39. Qian, Y., Qin, Z., Vu, N.M., Tong, G., Chin, Y.C.F. 2012. Comparison of nanocrystals from TEMPO oxidation of bamboo, softwood and cotton linter fibers with ultrasonic-assisted process. BioResources 7(4): 4952-4964.
  40. Qin, Z.Y., Tong, G.L., Chin, Y.C.F., Zhou, J.C. 2011. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. BioResources 6(2): 1136-1146.
  41. Rattaz, A., Mishra, S.P., Chabot, B., Daneault, C. 2011. Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18(3): 585-593. https://doi.org/10.1007/s10570-011-9529-8
  42. Rodionova, G., Eriksen O., Gregersen, O. 2012. TEMPO-mediated cellulose nanofiber films: effect of surface morphology on water resistance. Cellulose 19(4): 1115-1123. https://doi.org/10.1007/s10570-012-9721-5
  43. Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5): 1983-1989. https://doi.org/10.1021/bm0497769
  44. Saito, T., Kimura, S., Nishiyama, Y, Isogai A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8): 2485-2491. https://doi.org/10.1021/bm0703970
  45. Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A. 2006. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6): 1687-1691. https://doi.org/10.1021/bm060154s
  46. Saito, T., Shibata, I., Isogai, A., Suguri, N., Sumikawa, N. 2005. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate Polymers 61(4): 414-419. https://doi.org/10.1016/j.carbpol.2005.05.014
  47. Sharma, P.R., Varma, A.J. 2014. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydrate Polymers 114: 339-343. https://doi.org/10.1016/j.carbpol.2014.08.032
  48. Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G. 2011. A comparative study of Eucalyptus and Pinus radiata pulp fibers as raw materials for production of cellulose nanofibrils. Carbohydrate Polymers 84(3): 1033-1038. https://doi.org/10.1016/j.carbpol.2010.12.066
  49. Tejado, A., Alam, Md.N, Antal, M., Yang, H., van de Ven, T.G.M. 2012. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3): 831-842. https://doi.org/10.1007/s10570-012-9694-4
  50. Tomihata, K., Ikada, Y. 1997. Crosslinking of hyaluronic acid with water-soluble carbodiimide. Journal Biomedical Materials Research 37(2): 243-251. https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<243::AID-JBM14>3.0.CO;2-F
  51. Uddin, K.M.A., Lokanathan, A.R., Liljestrom, A., Chen, X., Rojas, O.J., Laine, J. 2014. Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Materials 2(4): 183-192. https://doi.org/10.1680/gmat.14.00010
  52. Yang, H., Nur Alam Nd, van den Ven, T.G.M. 2013. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4): 1865-1875. https://doi.org/10.1007/s10570-013-9966-7

Cited by

  1. Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release vol.25, pp.1, 2018, https://doi.org/10.1007/s10570-017-1585-2
  2. Surface modification of TEMPO-oxidized cellulose nanofibrils for composites to give color change in response to pH level pp.1572-882X, 2018, https://doi.org/10.1007/s10570-018-2072-0