DOI QR코드

DOI QR Code

개질한 sericite를 이용한 염색공장 폐수처리

Application of Modified Sericite for Dyeing Wastewater Treatment

  • 최희정 (가톨릭관동대학교 에너지 환경융합학과)
  • Choi, Hee-Jeong (Department of Energy and Environment Convergence, Catholic Kwandong University)
  • 투고 : 2015.08.03
  • 심사 : 2015.09.09
  • 발행 : 2015.09.30

초록

The aim of this study was to investigate the nutrient removal using Mg-Sericite flocculant in the dyeing wastewater. Mg-Sericite flocculant was removed successfully > 98% of the Color, SS. COD and BOD in the dyeing wastewater at the following optimal Mg-Sericite dosage: 100 mg/L for Colour and SS, 300 mg/L for BOD and COD. The removal of TN and TP was obtained 92.00% with 50 mg/L and 87.80% with 100 mg/L Mg-Sericite dosage, respectively. These results was indicated that the amount of 0.79~1.31, 0.22~0.37, 0.5 and 0.16 mg/L Mg-Sericite was necessary for 1 mg/L removal BOD, COD, TN and TP, respectively. The biopolymer, Mg-Sericite, can be a promising flocculants due to its high efficiency and low dose requirements. In addition, Mg-Sericite does not contaminate treated wastewater, which can be recycled to reduce not only the cost and the demand for water but also the extra operational costs for reusing wastewater. This flocculation method is helpful to lower the wastewater treatment cost.

키워드

참고문헌

  1. Abidi, N., Errais, E., Duplay, J., Berez, A., Jrad, A., Schafer, G., Ghazi, M., Semhi, K., Trabelsi-Ayadi, M., 2015, Treatment of dye-containing effluent by natural clay, J. Cleaner Prod., 86, 432-440. https://doi.org/10.1016/j.jclepro.2014.08.043
  2. Alhamad, A. L., Ismail, S., Bhatia, S., 2005, Optimization of coagulation-flocculation process for plam oil mill effluent using response surface methodology, Environ. Sci. Technol., 39, 2828-2834. https://doi.org/10.1021/es0498080
  3. Amuda, O. S., Alade, A., 2006, Coagulation/flocculation process in the treatment of abattoir wastewater, Desalination, 196, 22-31. https://doi.org/10.1016/j.desal.2005.10.039
  4. APHA, 2012, Standard methods for the examination of water and waste water, 22th ed. American Public Health Association Publ., Wachington, D.C.
  5. Blanco, J., Torrades, F., Moron, M., Brouta-Agnesa, M., Garcia-Montano, J., 2014, Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes, Chemical Eng. J., 240, 469-475. https://doi.org/10.1016/j.cej.2013.10.101
  6. Chen, T., Gao, B., Yue, Q., 2010, Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dualcoagulant in synthetic dyeing wastewater treatment, Colloids and Surfaces A: Physicochem. Eng. Aspects, 355(1-3), 121-129. https://doi.org/10.1016/j.colsurfa.2009.12.008
  7. Choi, H. J., 2015, Effect of Mg-Sericite flocculant for treatment of brewery wastewater, Appl. Clay Sci., 115, 145-149. https://doi.org/10.1016/j.clay.2015.07.037
  8. Guo, X., Yao, Y., Yin, G., Kang, Y., Luo, Y., Zhuo, L., 2008, Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay, Appl. Clay Sci., 40(1-4), 20-26. https://doi.org/10.1016/j.clay.2007.06.009
  9. Hadjltaief, H. B., Costa, P. D., Beaunier, P., Galvez, M. E., Zina, M. B., 2014, Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment, Appl. Clay Sci., 91-92, 46-54. https://doi.org/10.1016/j.clay.2014.01.020
  10. Ismail, I. M., Fawzy, A. S., Abdel-Monem, N. M., Mahmoud, Mohamed A., El-Halwany, M. A., 2012, Combined coagulation flocculation pre treatment unit for municipal wastewater, J. Adv. Res., 3, 331-336. https://doi.org/10.1016/j.jare.2011.10.004
  11. Kyzas, G. Z., Kostoglou, M., Vassiliou, A. A., Lazaridis, N. K., 2011, Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan, Chemical Eng. J., 168(2), 577-585. https://doi.org/10.1016/j.cej.2011.01.026
  12. Lee, S. M., Tiwari, D., 2012, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci., 59-60, 84-102. https://doi.org/10.1016/j.clay.2012.02.006
  13. Lee, Y. C., Park, W. K., Yang, J. W., 2011, Removal of anionic metals by amino-organoclay for water treat-ment, J. Hazard. Mat., 190, 652-658. https://doi.org/10.1016/j.jhazmat.2011.03.093
  14. Li, Z., Chang, P. H., Jiang, W. T., Jean, J. S., Hong, H., 2011, Mechanism of methylene blue removal from water by swelling clays, Chemical Eng. J., 168(3), 1193-1200. https://doi.org/10.1016/j.cej.2011.02.009
  15. Lin, P. J., Yang, M. C., Li, Y. L., Chen, J. H., 2015, Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane distillation used in dyeing wastewater treatment, J. Membrane Sci., 475, 511-520. https://doi.org/10.1016/j.memsci.2014.11.001
  16. Lotito, A. M., Fratino, U., Mancini, A., Bergna, G., Iaconi, C. D., 2012, Effective aerobic granular sludge treatment of a real dyeing textile wastewater, International Biodeterioration Biodegradation, 69, 62-68. https://doi.org/10.1016/j.ibiod.2012.01.004
  17. Lu, K., Zhang, X. L., Zhao, Y. L., Wu, Z. L., 2010, Removal of color from textile dyeing wastewater by foam separation, J. Hazard. Mat., 182(1-3), 928-932. https://doi.org/10.1016/j.jhazmat.2010.06.024
  18. Ministry of Environment, 2013, Environmental Statistics Yearbook, 26.
  19. Moghaddam, S. S., Alavi Moghaddam, M. R., Arami, M., 2010, Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology, J. Hazard. Mat., 175, 651-657. https://doi.org/10.1016/j.jhazmat.2009.10.058
  20. Rahman, A., Urabe, T., Kishimoto, N., 2013, Color removal of reactive production dyes by clay adsorbents, Procedia Environ. Sci., 17, 270-278. https://doi.org/10.1016/j.proenv.2013.02.038
  21. Rodrigues, C. S. D., Madeira, L. M., Boaventura, R. A. R., 2014, Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes Performance analysis with costs reduction, J. Environ. Chem. Eng., 2(2), 1027-1039. https://doi.org/10.1016/j.jece.2014.03.019
  22. Rong, H., Gao, B., Li, R., Wang, Y., Yue, Q., Li, Q., 2014, Effect of dose methods of a synthetic organic polymer and PFC on floc properties in dyeing wastewater coagulation process, Chemical Eng. J., 243, 169-175. https://doi.org/10.1016/j.cej.2013.12.005
  23. Sathian, S., Rajasimman, M., Rathnasabapathy, C. S., Karthikeyan, C., 2014, Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes, J. Water Process Eng., 4, 82-90. https://doi.org/10.1016/j.jwpe.2014.09.004
  24. Soares, P. A., Batalha, M., Selene, M. A., Souza, G. U., Boaventura, R. A. R., Vilar, V. J. P., 2015, Enhancement of a solar photo-Fenton reaction with ferricorganic ligands for the treatment of acrylic-textile dyeing wastewater, J. Environ. Manage., 152, 120-131. https://doi.org/10.1016/j.jenvman.2015.01.032
  25. Yang, Q., Wang, J., Wang, H., Chen, X., Ren, S., Li, X., Xu, Y., Zhang, H., Li, X., 2012, Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system, Bioresour. Technol., 117, 155-163. https://doi.org/10.1016/j.biortech.2012.04.059
  26. Yang, Z., Liu, X., Gao, B., Zhao, S., Wang, Y., Yue, Q., Li, Q., 2013, Flocculation kinetics and floc charac-teristics of dye wastewater by polyferric chloride-poly-epichlorohydrin-dimethylamine composite flocculant, Separation and Purification Technol., 118, 583-590. https://doi.org/10.1016/j.seppur.2013.08.004
  27. Ying, F., Gao, B. Y., Zhang, Y. F., Zhang, X. Y., Shi, N., 2011, Organic modifier of poly-silicic-ferric coagulant: Characterization, treatment of dyeing wastewater and floc change during coagulation, Desalination, 277 (1-3), 67-73. https://doi.org/10.1016/j.desal.2011.04.007
  28. Wang, J. P., Chen, Y. Z., Wang, Y., Yuan, S. J., Yu, H. Q., 2011, Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology, Water Res., 45 (17), 5633-5640. https://doi.org/10.1016/j.watres.2011.08.023
  29. Wang, Y., Gao, B., Yue, Q., Wang, Y., 2011, Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater, J. Environ. Sci., 23(10), 1626-1633. https://doi.org/10.1016/S1001-0742(10)60624-9
  30. Zhou, K., Zhang, Q., Wang, B., Liu, J., Wen, P., Gui, Z., Hu, Y., 2014, The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites, J. Cleaner Prod., 81, 281-289. https://doi.org/10.1016/j.jclepro.2014.06.038