DOI QR코드

DOI QR Code

Removal of Sr and Cs Ions in Aqueous Solution by PVC-Zeolite Composite

PVC-Zeolite 복합체에 의한 수용액 중의 Sr 이온과 Cs 이온의 제거

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University) ;
  • Min, Seong-Kee (Department of Polymer Engineering, Pukyong National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과) ;
  • 민성기 (부경대학교 고분자공학과)
  • Received : 2015.07.13
  • Accepted : 2015.09.03
  • Published : 2015.09.30

Abstract

PVC-Zeolite composite was prepared by immobilizing zeolite with polyvinyl chloride (PVC). The prepared PVC-Zeolite beads were characterized by using X-ray diffractometer (XRD), fourier transform infrared spectrometer (FTIR), thermo gravimetric analyzer (TGA), and scanning electron microscopy (SEM). The removal properties of Sr and Cs ions from aqueous solution were investigated in batch experiment. The removal efficiencies of Sr and Cs ions by the PVC-Zeolite beads were dependent on the initial pH of solution. The removal efficiencies sharply increased at below pH 4 and was kept constant at pH 4 or more. The adsorption kinetics of Sr and Cs ions by the PVC-Zeolite beads were fitted well by the pseudo-second-order model ($r^2$>0.99) more than pseudo-first-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 39.37 mg/g and 55.87 mg/g, respectively.

Keywords

References

  1. Bascetin, E., Atun, G., 2010, Adsorptive removal of strontium by binary mineral mixtures of montmorillonite and zeolite, J. Chem. Eng. Data, 55, 783-788. https://doi.org/10.1021/je9004678
  2. Faghihian, H., Moayed, M., Firooz, A., Iravani, M., 2013, Synthesis of a novel magnetic zeolite nanocomposite for removal of $Cs^+$ and $Sr^{2+}$ from aqueous solution: Kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci., 393, 445-451. https://doi.org/10.1016/j.jcis.2012.11.010
  3. Gurboda, G., Tel, H., 2005, Preparation of $TiO_2$-$SiO_2$ mixed gel spheres for strontium adsorption, J. Hazard. Mater., 120, 135-142. https://doi.org/10.1016/j.jhazmat.2004.12.037
  4. Ho, Y. S., McKay, G., 1999, Pseudo-second order model for sorption processes, Pro. Biochem., 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  5. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127, 97-98.
  6. Krishna, M. V. B., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., Manchanda, V. K., 2004, Removal of $^{137}Cs$ and $^{90}Sr$ from actual low level radioactive waste solutions using moss as a phyto-sorbent, Sep. Purif. Technol., 38, 149-161. https://doi.org/10.1016/j.seppur.2003.11.002
  7. Lee, C. H., Park, J. M., Kam, S. K., Lee, M. G., 2015, Preparation of novel PS-zeolite beads immobilized zeolite with polysulfone for radioactive materials, J. Korean Soc. Environ. Eng., 37, 145-151. https://doi.org/10.4491/KSEE.2015.37.3.145
  8. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite, J. Environ. Sci. Int., 23, 1775-1790. https://doi.org/10.5322/JESI.2014.23.11.1775
  9. Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, Environ. Sci. J., 21, 623-631.
  10. Liang, Z., Ni, J., 2009, Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process, J. Hazard. Mater., 166, 52-60. https://doi.org/10.1016/j.jhazmat.2008.11.002
  11. Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20. https://doi.org/10.1016/j.seppur.2012.10.005
  12. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., Zarghami, R., 2011, Adsorption of cesium on copper hexacyanoferrate - PAN composite ion exchanger from aqueous solution, Chem. Eng. J., 172, 572-580. https://doi.org/10.1016/j.cej.2011.06.011
  13. Shakir, K., Sohsah, M., Soliman, M., 2007, Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation, Sep. Purif. Technol., 54, 373-381. https://doi.org/10.1016/j.seppur.2006.10.006
  14. Walker, D. D., Norato, M. A., Campbell S. G., 2005, Cesium removal from Savannah river site radioactive waste using the caustic-side solvent extraction (CSSX) process, Sep. Sci. Technol., 40, 297-309. https://doi.org/10.1081/SS-200042239
  15. Xu, J., Xu, Z. L., 2002, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent, J. Mem. Sci., 208, 203-212. https://doi.org/10.1016/S0376-7388(02)00261-2
  16. Yang, K., Zhang, X., Chao, C., Zhang, B., Liu, J., 2014, In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution Elsevier Ltd. Carbo. Polym., 107, 103-109. https://doi.org/10.1016/j.carbpol.2014.02.001
  17. Zhao, Y., Zhang, B., Zhang, X., Wang, J., Liu, J., Chen, R., 2010, Ammonium removal from aqueous solution by zeolite X synthesized from halloysite mineral., Water Sci. Technol., 62, 937-946. https://doi.org/10.2166/wst.2010.301