DOI QR코드

DOI QR Code

Experiment Study on Mixing Efficiency of Material for Improving Reclamation Soil Quality in Dredging Soil Pipeline using CFD

준설토 배송관로 내에서의 개질재 혼합효율에 대한 CFD 해석

  • 박병준 (한국농어촌공사 농어촌연구원) ;
  • 강병윤 (한국농어촌공사 농어촌연구원) ;
  • 정민철 (한국농어촌공사 농어촌연구원) ;
  • 신재렬 ((주)넥스트폼 기술연구소)
  • Received : 2015.03.13
  • Accepted : 2015.08.24
  • Published : 2015.10.01

Abstract

This study utilised Computational Fluid Dynamics(CFD) for preliminary assessment of mixing efficiencies of 2-phase fluids in a pipe at which a slurry flow and an injected solidifier join, for the purposes of reducing trial-and-error-based instances of physical experiments and conducting the overall research in an economical way. Using OpenFOAM$^{(R)}$, we simulated behavior of 3-phase fluids under 18 different settings generated by changing diameters of a dredged soil transportation pipe, a quality improving material injection pipe and the confluence angle. While difference in mixing efficiencies amongst the instances was insignificant, discernible boundary layers amongst the materials were observed in all of the instances. In order to break the boundary layers, we designed a substructure inside a pipe and found out that it could remarkably improve mixing efficiencies particularly for short distance applications.

본 연구는 준설매립과정에서의 관중혼합 거동을 3차원 전산유체역학(CFD, Computational Fluid Dynamics)을 통해 분석한 연구로 준설토 배송관과 개질재 주입관이 합류하며 발생되는 이상(2-phase)유체의 혼합효율을 사전 평가함으로써 관중혼합 양상을 고찰하는 물리실험의 시행착오를 줄여 경제성을 증진시키는데 연구목적을 두고 있다. 수치해석에 이용된 CFD 코드는 OpenFOAM$^{(R)}$이고, 몇 가지의 기본가정 하에 배송관-주입관의 관경과 합류각을 변화시켜 총 18가지 경우에 대한 삼상(3-phase)유체 거동을 모의하였다. 그 결과 혼합효율에 대한 우열은 있었으나 그 차이는 미미하였고, 모든 경우에서 각 재료 사이의 경계층이 뚜렷하게 형성되었다. 이러한 현상을 극복하기 위한 보완 실험을 통해 경계층 파쇄(破碎)를 위한 관 내 부속 구조물이 고안되었으며, 본 연구에서 제시된 구조물은 단거리 배송관로 내 준설토와 개질재의 혼합효율을 크게 향상시킬 수 있음을 확인할 수 있었다.

Keywords

References

  1. Bove, S. (2005). Computational fluid dynamics of gas-liquid flows including bubble population balances, PhD Thesis, Esbjerg Institute of Engineering, Denmark.
  2. Drew, D. A. and Passman, S. L. (1998). "Theory of multicomponent fluids." Springer, 1st Ed.
  3. Hwang, D., Yoo, S. S. and Park, H. K. (2008). "Pulsatile flow simuation of a non-newtonian fluid through a bifurcation tube using the CFD analysis." Proc. of 2008 Fall Conf. on Korean CFD, KSCFE, pp. 177-180 (in Korean).
  4. Institution of Civil Engineers (2005). 2nd International Conference on Maintenance Dredging, Thomas Telford Ltd, London, UK.
  5. Ishii, M. (1975). "Thermo-fluid dynamic theory of two-phase flow." Eyrolles, Paris.
  6. Marc S. Ingbera, Alan L. Grahamb, Lisa A. Mondyc, Zhiwu Fangd (2009). "An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependance on particle radius." International Journal of Multiphase Flow, Vol. 35, No. 3, pp. 270-276. https://doi.org/10.1016/j.ijmultiphaseflow.2008.11.003
  7. OpenFOAM Foundation (2014). Open$\nabla$FOAM User Guide: The Open Source CFD Toolbox, Available at: http://www.openfoam.org/docs/ (Accessed: March 13, 2015).
  8. PIANC (2009). "Dredging management practices for the environment: A Structured Selection Approach." Report No. 100, Brussels, Belgium.
  9. Satoh, T. (2003). "Application of pneumatic flow mixing method to central japan international airport construction." Journal of Civil Engineering, JSCE, Vol. 61, No. 749, pp. 33-47, Japan.
  10. Song, K. S. (2003). "Method for solidification process of dredged soils." KSCE Magazine, KSCE, Vol. 51, No. 5, pp. 31-43 (in Korean).
  11. Yoon, G. L. (2015). "Considering benefical reuse of dredged materials in Korea." KSCE Magazine, KSCE, Vol. 63, No. 4, pp. 27-34 (in Korea).