DOI QR코드

DOI QR Code

공극매체에서의 파동장에 대한 Boussinesq 방정식의 유도 및 적용

Derivation and Application of Boussinesq Equations for the Wave Field in Porous Media

  • 투고 : 2015.04.22
  • 심사 : 2015.08.04
  • 발행 : 2015.10.01

초록

공극매체에서의 파동장을 해석할 목적으로 공극매체 흐름에 대한 Reynolds 이송정리를 적용하여 공극매체에서의 Navier-Stokes 방정식을 유도하였으며 기존의 연구들과 비교하였다. 또한, 이 N-S 방정식을 이용하여 공극매체 내외에서 파동장의 비선형성과 분산성을 적절히 재현하기 위한 확장형 Boussinesq 방정식을 유도하였다. 이들 방정식의 정확도를 검증하기 위하여 공극방파제의 반사율과 투과율에 대한 수치해석을 수행하여 그 결과를 기존의 수리실험결과들과 비교하였다. 수치해석결과는 토립자의 가상질량계수에 민감하게 반응하였으며 계수를 영으로 처리했을 때 수리실험결과와 비교적 잘 일치하는 것으로 나타났다.

In the present study, the Navier-Stokes (N-S) equations delineating water flows inside porous media were derived applying Reynolds transport theorem in order to provide a basis for analyzing water wave problems inside the porous media. Then, the derived N-S equations were compared with the same species of equations in existing researches. Based on the N-S equations, a set of Boussinesq equations was then derived in such a form that the dispersiveness and nonlinearity of water waves inside the porous media can be properly reproduced. Finally, numerical analyses were carried out to demonstrate the validity of the equations. The reflection and transmission coefficients of porous breakwaters were calculated and compared with the results of existing hydraulic experiments. The numerical results showed a rather sensitive dependency on the virtual mass coefficient of grains constituting the porous media. The selection of the coefficient with zero turned out to give nice agreements with numerical and experimental results.

키워드

참고문헌

  1. Biot, M. A. (1956). "Theory of propagation of elastic waves in a fluid saturated porous solid. I - Low frequency range." J. Accoust. Soc. Am., Vol. 28, pp. 168-178. https://doi.org/10.1121/1.1908239
  2. Burcharth, H. F. and Anderson, O. H. (1995). "On the one-dimensional steady and unsteady porous flow equations." Coastal Engineering, Vol. 24, pp. 233-257. https://doi.org/10.1016/0378-3839(94)00025-S
  3. CDIT (2001). CADMAS-SURF, Coastal Development Institute of Technology (in Japan).
  4. Chun, I. (2007). "Simulation of reflective boundaries using the sponge layer in Bousinesq wave propagation model." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 19, No. 5, pp. 429-435 (in Korean).
  5. Chun, I., Kim, G. and Sim, J. (2006). "Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 18, No. 2, pp. 154-165 (in Korean).
  6. Chun, I., Lee, Y., Park, K. and Ahn, D. (2007). "Development of an integrated software for determining the optimal cross-section of perforated harbor structures." 2007 Joint Conference of the Korean Association of Ocean Science and Technology Societies, pp. 2246-2249 (in Korean).
  7. Cruz, E. C., Isobe, M. and Watanabe, A. (1997). "Boussinesq equations for wave transformation on porous beds." Coastal Engineering, Vol. 30, pp. 125-156. https://doi.org/10.1016/S0378-3839(96)00039-7
  8. De Josselin de Jong, G. (1956). "Wat gebeurt er in de grond tijdens het heien." De Ingenieur, Vol. 68, pp. B77-B88, Netherlands.
  9. Dingemans, M. W. (1997). Water Wave Propagation over Uneven Bottoms, World Scientific Pub Co Inc., p. 988.
  10. Engelund, F. (1953). "On the laminar and turbulent flows of ground water through homogeneous sand." Transactions of the Danish Academy of Technical Sciences, Vol. 3, No. 4.
  11. Fair, G. M. and Hatch, L. P. (1933). "Fundamental factors governing the streamline flow of water through sand." J. of Am. Water Works Assoc., Vol. 25, pp. 1551-1565.
  12. Hsiao, S. C., Lynett, P. J., Hwung, H. H. and Liu, P. L. F. (2005). "Numerical simulations of nonlinear short waves using the multi-layer model." J. Eng. Mech., Vol. 131, No. 3, pp. 231-243. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(231)
  13. Hu, K. C., Hsiao, S. C., Hwung, H. H. and Wu, T. R. (2012). "Three-dimensional numerical modeling of the interaction of dam-break waves and porous media." Advances in Water Resources, Vol. 47, pp. 14-30. https://doi.org/10.1016/j.advwatres.2012.06.007
  14. Keulegan, G. H. (1973). Wave transmission through rock-structures, U.S. Army Engineer Waterways Experiments Station, Vicksburg, Research Report No. H-73-1.
  15. Lee, C. and Park, S. (2011). "Numerical simulation of propagation of random waves inside or over porous layers using mild-slope equation." Joint Conference of the Korean Association of Ocean Science and Technology Societies, Vol. 2011, No. 8, pp. 1858-1861 (in Korean).
  16. Lynett, P. J. and Liu, P. L. F. (2004). "A two layer approach to wave modelling." Proc. R. Soc. Lond. A, 460, 2637-2669. https://doi.org/10.1098/rspa.2004.1305
  17. Lynett, P. J., Liu, P. L. F. and Losada, I. J. (2000). "Solitary wave interaction with porous breakwaters." J. of waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 126, No. 6, pp. 314-322. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:6(314)
  18. Nwogu, O. G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesq wave model for coastal regions and harbors, Report 1 : Theo­retical background and user's manual, US Army Corps of Engineers.
  19. Nwogu, O. (1993). "An alternative form of the Boussinesq equations for nearshore wave propagation." J. of waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 119, No. 6, pp. 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  20. Park, W., Oh, Y. and Chun, I. (1992). "Separation technique of incident and reflected waves using least squares method." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 4, No. 3, pp. 139-145 (in Korean).
  21. Peregrine, D. H. (1972). "Equations for water waves and the approximations behind them." Waves on Beaches and Resulting Sediment Transport, R. Meyer, ed., Academic Press, pp. 95-122.
  22. Pride, S. R., Gangi, A. F. and Morgan, F. D. (1992). "Deriving the equations of motion for porous isotropic media." J. Acoust. Soc. Am., Vol. 92, No. 6, pp. 3278-3290. https://doi.org/10.1121/1.404178
  23. Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwaters." 23rd. Int. Conf. Coastal Engng., ASCE, pp. 1531-1544.
  24. Sollitt, C. K. and Cross, R. H. (1972). "Wave transmission through permeable breakwaters." Proc. 13rd Int. Conf. Coastal Engng., ASCE, pp. 1827-1846.
  25. Sollitt, C. K. and Cross, R. H. (1976). Wave reflection and transmission at permeable breakwaters, CERC Technical Paper No. 76-8, p. 172.
  26. van Gent, M. R. A. (1995). Wave interaction with permeable coastal structures, Delft University Press, pp. 23-27.
  27. Verruijt, A. (1994). Soil dynamics, Delft University of Technology, pp. 39-45.
  28. Walkley, M. A. (1999). A numerical method for extended Boussinesq shallow-water wave equations, Doctoral dissertation, School of Computer studies, The Univ. of Leeds, p. 179.
  29. Wei, G., Kirby, J. T. and Sinha, A. (1999). "Generation of waves in Boussinesq models using a source function model." Coast. Engrg., Vol. 36, pp. 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
  30. Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R. (1995). "A fully nonlinear Boussinesq model for surface waves. Part1. Highly nonlinear unsteady waves." J. of Fluid mech., Vol. 294, pp. 71-92. https://doi.org/10.1017/S0022112095002813