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THE CORES OF PAIRED-DOMINATION GAMES

Hye Kyung Kim

Abstract. Velzen introduced the rigid and relaxed dominating set games
and showed that the rigid game being balanced is equivalent to the relaxed

game being balanced in 2004. After then various variants of dominating

set games were introduced and it was shown that for each variant, a rigid
game being balanced is equivalent to a relaxed game being balanced. It

is natural to ask if for any other variant of dominating set game, the

balancedness of a rigid game and the balancedness of a relaxed game are
equivalent. In this paper, we show that the answer for the question is

negative by considering the rigid and relaxed paired-domination games,
which is considered as a variant of dominating set games. We characterize

the cores of both games and show that the rigid game being balanced is

not equivalent to the relaxed game being balanced. In addition, we study
the cores of paired-dominations games on paths and cycles.

1. Introduction

Throughout this paper, we assume that a graph means a simple graph with
at least two vertices. An edge of a graph with endpoints u and v is denoted by
uv. A weighted graph is a graph G with a vertex weight function ω : V (G) →
R+ \ {0} (R+ is the set of nonnegative real numbers), and for D ⊆ V (G), we
let ω(D) =

∑
v∈D ω(v). For a graph G and a set S ⊆ V (G), we denote by G[S]

the subgraph of G induced by S. For a vertex v of a graph G, the set of vertices
that are adjacent to v is denoted by NG(v).

A dominating set of a graph G is a vertex set D ⊂ V (G) such that for each
vertex v ∈ V (G) \ D, there exists a vertex w ∈ D which is adjacent to v. A
perfect matching of a graph G is an edge set M ⊂ E(G) such that the set of
all endpoints of M is equal to V (G) and any two edges in M does not share an
endpoint. For a graph G, a set D ⊂ V (G) is called a paired-domination set of
G if D is a dominating set of G and G[D] has a perfect matching.
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Let G be a weighted graph with no isolated vertex a vertex weight function
ω. The paired-domination number of G is defined by

γp(G) = min{ω(D) | D is a paired-domination set of G}.
The paired-domination problem of G is to find the paired-domination number
of G.

The paired-domination problem of a weighted graph is one of domination
problems on graphs, which was introduced by Haynes and Slater [4]. The
paired-domination problem has some practical applications: we assume that
each vertex of a graph is the location of villages and the weight of a vertex is
the cost for placing a guard on the village corresponding to the vertex. One
might want to place guards on some villages in which guards’ location must be
selected as a pair of adjacent vertices so that each guard is assigned on other.
From the authority’s point of view, one wishes to minimize the total cost for
placing guards, and finding the minimum cost is the paired-domination prob-
lem. Then it is natural to ask how to distribute the total cost of placing guards
to the villages, and this question is closely related to a solution of a cooperative
game.

A cooperative game (or game for short) is an ordered pair (V, c) of a player
set V and a characteristic function c : 2V → R∪{∞} with c(∅) = 0. For S ⊂ V
and z ∈ RV , we denote z(S) =

∑
v∈S zv

1. For a game (V, c), a subset X of RV

in which each element x ∈ X satisfies the property that x(V ) = c(V ) is called a
solution of (V, c). For a game (V, c), c(S) represents the cost which the players
in S achieve together for each S ⊆ V , and a solution of (V, c) shows how to
distribute the total cost c(V ) among all the players. As an important solution,
the core C(V, c) of a game (V, c) is defined by

C(V, c) = {z ∈ RV | z(V ) = c(V ) and ∀S ⊆ V, z(S) ≤ c(S)}.
We say a game is balanced if its core is nonempty. In this paper, we introduced

two kinds of paired-domination games, a rigid paired-domination game and
a relaxed paired-domination game, which are cooperative games arising from
paired-domination problems on graph structures, and focus on their cores.

Cooperative games that arise from domination problem on graphs were stud-
ied by van Velzen [10] to model the cost allocation problem arising from domi-
nation problems on graphs (see [1, 3] for more information on cooperative games
caused from graph structures). He introduced rigid dominating set games and
relaxed dominating set games, and characterized their cores and then balanced-
ness of two games are equivalent. After then, variants of dominating set games
were introduced and studied (see [2, 5, 6, 7, 8, 9]), and it is shown that the
result on equivalence of balancedness of rigid and relaxed dominating set games
are well extended to those variants. It is natural to ask if there is a variant

1We denote by RV the |V |-dimensional vector space over R in which the entries of a vector

are indexed by the elements of V . For a vector x ∈ RV , xv denotes the value of the entry of

x indexed by v ∈ V .
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of dominating set game which does not satisfy the equivalence of balanced-
ness. We derive an answer for the question by introducing two kinds of paired-
domination games, a rigid and a relaxed paired-domination games, and showing
that a relaxed paired-domination game being balanced does not imply a rigid
paired-domination game being balanced.

This paper is organized as follows. Section 2 introduces the rigid paired-
domination game and the relaxed paired-domination game associated with a
weighted graph and gives characterization results on the cores of paired-domination
games. Then we show that a rigid paired-domination game being balanced is
not equivalent to a relaxed paired-domination game being balanced. Section 3
discusses on the balancedness of the rigid and relaxed paired-domination games
associated with a path and a cycle. Section 4 gives concluding remarks.

2. Characterization of the cores of paired-domination games

Let G be a weighted graph with no isolated vertices whose vertex weight
function is ω. For S ⊆ V (G), ω(S) =

∑
v∈S ω(v). For S ⊆ V (G), a set D ⊂ S

is called a rigid paired-domination set for S if G[S] has no isolated vertex and
D is a paired-domination set. In addition, for any S ⊆ V (G), a set D ⊂ V (G) is
a relaxed paired-domination set for S, if for each vertex v ∈ S \D, there exists
a vertex w ∈ D which is adjacent to v, and G[D] has a perfect matching. Since
a graph G has no isolated vertex, it is true that any S ⊂ V (G) has a relaxed
paired-domination set.

Now we introduce two games associated with a weighted graph in the follow-
ing.

Definition. Given a weighted graph G with no isolated vertex whose vertex
weight function is ω, (V, c) is called the rigid paired-domination game associated
with G if V = V (G) and a function c : 2V (G) → R ∪ {∞} is defined as follows:
i) c(∅) = 0;

ii) for ∅ ( S ⊆ V (G), if G[S] has an isolated vertex then c(S) =∞, and if G[S]
has no isolated vertex then

c(S) = min{ω(D) | D is a rigid paired-domination set for S} = γp(G[S]).

Definition. Given a weighted graph G with no isolated vertex whose vertex
weight function is ω, (V, c̃) is called the relaxed paired-domination game asso-
ciated with G if V = V (G) and a function c̃ : 2V (G) → R ∪ {∞} is defined as
follows:
i) c̃(∅) = 0;

ii) for ∅ ( S ⊆ V (G),

c̃(S) = min{ω(D) | D is a relaxed paired-domination set for S}.

Whenever we consider a paired-domination game associated with a graph G,
we always assume that G has no isolated vertices.
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In the following, we investigate the cores of rigid paired-domination games
and relaxed paired-domination games. Let G be a graph. For an edge uv of G,
a subset of NG(u) ∪ NG(v) containing {u, v} is called a uv-star. A subset of
V (G) is called a star if it is a uv-star for some edge uv. We denote by Tuv(G)
the set of all uv-stars of G.

We will present characterization results of the cores of both rigid and relaxed
paired-domination games. Theorem 2.1 and Theorem 2.2 are characterizations
for the cores of the rigid and relaxed paired-domination games, respectively.
First, we see a characterization result of the cores for rigid paired-domination
games.

Theorem 2.1. Let (V, c) be the rigid paired-domination game associated with
a weighted graph G whose vertex weight function is ω. Then z ∈ C(V, c) if and
only if the following hold:

(a) z(V ) = c(V );
(b) for any edge uv, for any uv-star T of G, z(T ) ≤ ω(u) + ω(v).

Proof. The ‘only if’ part is easy. Let z be an element of C(V, c). Then by the
definition of the core, (a) follows immediately. To show (b), take an uv-star
T ∈ Tuv(G) for some edge uv. Then z(T ) ≤ c(T ) by the definition of the core.
Then {u, v} is a rigid paired-domination set for T . Since c(T ) is the minimum
weight of rigid paired-domination sets for T , c(T ) ≤ ω(u) + ω(v). Therefore,
z(T ) ≤ ω(u) + ω(v) and so (b) holds.

Now we will show the ‘if’ part. Suppose that z satisfies (a) and (b). It is
sufficient to show that z(S) ≤ c(S) for any S ⊂ V . Take S ⊂ V . If G[S] has an
isolated vertex, c(S) =∞ and so z(S) ≤ ∞ = c(S) holds. Now we consider the
case where G[S] has no isolated vertex. Then there is a rigid paired-domination
set D for S such that c(S) = w(D). Let D = {u1, u2, . . . , uk, v1, v2, . . . , vk}
where {uivi | 1 ≤ i ≤ k} is a perfect matching of G[D]. Then there exists a
function f : (S \D)→ D such that f(v) ∈ NG[S](v) for any v ∈ S \D. For each
1 ≤ i ≤ k, let

Ti = {ui, vi} ∪ f−1({ui, vi}).

Then Ti is uivi-star. Also, {T1, T2, . . . , Tk} is a partition of S, and so z(S) =∑k
i=1 z(Ti). By the assumption (b), we have z(Ti) ≤ ω(ui) + ω(vi). Therefore,

z(S) ≤
k∑

i=1

(ω(ui) + ω(vi)) =
∑
v∈D

ω(v) = ω(D) = c(S).

Hence z(S) ≤ c(S). �

Now we give a characterization of a core element of a relaxed paired-domination
game. For an edge uv of a graph G, the uv-star NG(u) ∪NG(v) of G is called
the maximal uv-star of G.
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Theorem 2.2. Let (V, c̃) be the relaxed paired-domination game associated with
a weighted graph G whose vertex weight function is ω. Then z ∈ C(V, c̃) if and
only if the following hold:

(a) z(V ) = c̃(V );
(b) for each v ∈ V (G), zv ≥ 0;
(c) for any edge uv, z(T ∗uv) ≤ ω(u)+ω(v) where T ∗uv is the maximal uv-star

of G.

Proof. We will show the ‘only if’ part first. Let z be an element of C(V, c̃). By
the definition of C(V, c) (a) holds. Since c̃(S) ≤ c̃(T ) for every S ⊆ T ⊆ V ,
zv = z(V ) − z(V \ {v}) ≥ c̃(V ) − c̃(V \ {v}) ≥ 0 for every v ∈ V . From this
observation, (b) holds immediately. To show (c), take an edge uv. Let T ∗uv be
the maximal uv-star of G. Then {u, v} is a relaxed paired-domination set for
T ∗uv. Therefore c̃(T ∗uv) ≤ ω(u) + ω(v), and so (c) holds.

To show the ‘if’ part, suppose that z satisfies (a), (b) and (c). It is sufficient
to show that z(S) ≤ c̃(S) for any S ⊂ V . Take a subset S ⊂ V . Then there
is a relaxed paired-domination set D for S such that c̃(S) = w(D). Let D =
{u1, u2, . . . , uk, v1, v2, . . . , vk} where {uivi | 1 ≤ i ≤ k} is a perfect matching of
G[D]. For each 1 ≤ i ≤ k, let

Ti = NG(ui) ∪NG(vi).

Then for each 1 ≤ i ≤ k, Ti is the maximal uivi-star of G and
⋃k

i=1 Ti ⊇ S. By
the assumption that zv > 0 for all v ∈ V ,

z(S) ≤ z(
k⋃

i=1

Ti) ≤
k∑

i=1

z(Ti).

Since z(Ti) ≤ ω(ui) + ω(vi) by (c),

k∑
i=1

z(Ti) ≤
k∑

i=1

(ω(ui) + ω(vi)) =
∑
v∈D

ω(v) = ω(D) = c̃(S).

Hence z(S) ≤ c̃(S). �

Theorem 2.2 says that determining if given vector is in the core or not of a
relaxed paired-domination game can be done in polynomial time. From The-
orem 2.1 and Theorem 2.2, it can be easily checked that the core of a relaxed
paired-domination game coincides the nonnegative vectors in the core of a rigid
paired-domination game.

Corollary 2.3. Let (V, c) be the rigid paired-domination game and (V, c̃) be the
relaxed paired-domination game, both of which associate with a weighted graph
G whose vertex weight function is ω. Then C(V, c) ∩ RV

+ = C(V, c̃).

For dominating set games [10], the balancedness of a rigid dominating set
game is equivalent to the balancedness of a relaxed dominating set game. For all
variants known until now, that is, integer dominating set games [5], fractional
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Figure 1. A graph G whose vertex weight function ω is de-
fined by ω(v1) = ω(v2) = ω(v4) = ω(v5) = 2, ω(v3) = 1

dominating set games [6], edge covering games [7], and integer edge covering
games [9], the balancedness of a rigid one is equivalent to balancedness of cor-
responding relaxed one. Thus it can be natural to ask if for any other variant
of dominating set game, the balancedness of a rigid game and the balancedness
of a relaxed game are equivalent. However, Example 1 shows that it the answer
for the question is negative in the case of paired-domination games, that is, the
rigid paired-domination game being balanced is not equivalent to the relaxed
paired-domination game being balanced.

Example 1. See Figure 1, which shows a graphG such that V (G) = {v1, v2, v3, v4, v5}.
Let a vertex weight function ω of G be defined by ω(v1) = ω(v2) = ω(v4) =
ω(v5) = 2 and ω(v3) = 1. Let (V, c) be the rigid paired-domination game and
(V, c̃) be the relaxed paired-domination game, both of which associate with a
weighted graph G We will see that C(V, c) 6= ∅ and C(V, c̃) = ∅. Then c(V ) = 7
and (4, 0,−1, 0, 4) ∈ C(V, c). Therefore, C(V, c) 6= ∅. Suppose that C(V, c̃) 6= ∅.
Take z ∈ C(V, c̃). Then c̃(V ) = 7 and zv1

+ zv2 + zv3 + zv4 + zv5 = 7. Since the
maximal v2v3-star satisfies the condition (c) of Theorem 2.2, zv1 + zv2

+ zv3 +
zv4 ≤ ω(v2) + ω(v3) = 3. Therefore zv5 ≥ 4. Similarly, zv2 + zv3 + zv4 + zv5 ≤ 3
and so zv1 ≥ 4. Then zv1 + zv5 ≥ 8 and zv1 + zv2 + zv3 + zv4 + zv5 = 7. It
follows that zv2 + zv3 + zv4 ≤ −1, which implies that there exists a vertex vi
such that zvi < 0. Therefore z does not satisfies the condition (b) of Theorem
2.2, a contradiction. Thus C(V, c̃) = ∅.

By Corollary 2.3 and Example 1, the following holds:

Theorem 2.4. Let (V, c) be the rigid paired-domination game and (V, c̃) be the
relaxed paired-domination game, both of which associate with a weighted graph
G whose vertex weight function is ω. Then (V, c) being balanced implies (V, c̃)
being balanced, and the converse is not true.

3. The paired-domination games on paths and cycles

In this section, we always assume that any vertex weight function of a graph
is the constant function 1. Then the paired-domination number of a graph is
equal to the minimum size of a paired-domination set. We denote by Pn and
Cn a path with n vertices and a cycle with n vertices, respectively. It is well
known that for an integer n greater than 2, γp(Pn) = γp(Cn) = 2 × dn4 e (see
[4]).

We will show that both the rigid and relaxed paired-domination games as-
sociate with a path are always balanced, whereas two games associate with a
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cycle are not. In addition, we give the sufficient and necessary condition for the
balancedness of both games associate with a cycle.

Theorem 3.1. The rigid paired-domination game (V, c) and the relaxed paired-
domination game (V, c̃), both of which associate with a path Pn (n ≥ 2), are
always balanced.

Proof. If n = 2, then V (Pn) is a paired-domination set and any vector (x, 2−x)
belongs to C(V, c). Suppose that n ≥ 3. Let the vertices of Pn be v1, v2, . . . ,
vn such that vivi+1 ∈ E(Pn) for each i = 1, 2, . . . , n− 1. Let z be the vector in
RV defined by

zv =

{
2 if v = v4k+1 for some integer k
0 otherwise

.

Then
∑

v∈V zv = 2× dn4 e. Since γp(Pn) = 2× dn4 e,
∑

v∈V zv = γp(Pn) = c̃(V ).
In addition, zv ≥ 0 for any vertex v. For an edge uv, the maximal uv-star T
has at most 4 consecutive vertices and so

∑
v∈V (T ) zv ≤ 2. By Theorem 2.2, z

is an element of C(V, c̃). By Corollary 2.3, z ∈ C(V, c). Hence both (V, c) and
(V, c̃) are balanced. �

Theorem 3.2. Let (V, c) and (V, c̃) be the rigid paired-domination game and
the relaxed paired-domination game, both of which associate with a cycle Cn

(n ≥ 4). Then the following are equivalent:

(i) (V, c) is balanced;
(ii) (V, c̃) is balanced;
(iii) n is a multiple of 4.

Proof. Let the vertices of Cn be v1, v2, . . . , vn such that vivi+1 ∈ E(Cn) for
each i = 1, 2, . . . , n, and we assume that the subscripts are reduced to modulo
n. By Corollary 2.3, it is sufficient to show that (iii) implies (ii) and (i) implies
(iii).

First, we show that (iii) implies (ii). Suppose that n = 4q for some integer
q. Let z be the vector in RV defined by

zv =

{
2 if v = v4k+1 for some integer k
0 otherwise

.

Then
∑

v∈V zv = 2q = 2×dn4 e = c(V ). In addition, zv ≥ 0 for each vertex v. For
an edge uv and for a uv-star T of G, T contains at most 4 consecutive vertices
and the sum of 4 consecutive vertices is always 2. Therefore

∑
v∈V (T ) zv ≤ 2.

By Theorem 2.2, z is an element of C(V, c̃). Thus (V, c̃) is balanced.
To show that (i) implies (iii) by contradiction, suppose that C(V, c) 6= ∅

and n is not a multiple of 4. Then there exists an element z ∈ (V, c). For
convenience, we denote zvi by zi. By division algoritheorem, there exist two
integers q and r such that n = 4q + r and 0 < r ≤ 3. By the definition of the
core,

∑n
j=1 zj = γp(Cn) = 2q + 2. For each vertex vi, the subgraph obtained

by deleting the r consecutive vertices vi, . . . , vi+r−1 is a path P4q of 4q vertices
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and so
∑n

j=1 zj −
∑r

j=1 zi+j−1 ≤ c(P4q) by the definition of the core. Since

c(P4q) = 2q, it holds that

(∀i ∈ {1, 2, . . . , n})
r∑

j=1

zi+j−1 ≥ 2. (1)

If r = 1, then zi ≥ 2 for each vertex vi by (1), and then 2q + 2 =
∑n

i=1 zi ≥
2n = 8q+ 2r, a contradiction. If r = 2, then zi + zi+1 ≥ 2 for each vertex vi by
(1), and then

2q + 2 =

n∑
i=1

zi =

2q+1∑
i=1

(z2i−1 + z2i) ≥ (2q + 1)× 2 = 4q + 2,

a contradiction. Suppose that r = 3. Take a vertex vi. Then zi+zi+1+zi+2 ≥ 2
by (1). By the condition (b) of Theorem 2.1,

zi + zi+1 + zi+2 ≤ 2;
zi+1 + zi+2 ≤ 2.

Then zi + zi+1 + zi+2 = 2 and so zi ≥ 0. Therefore zi ≥ 0 for each vertex vi.
Let m and s be nonnegative integers such that q = 3m + s and 0 ≤ s ≤ 2.

Then 2q+ 2 = 6m+ 2s+ 2 and n = 4q+ 3 = 4(3m+ s) + 3 = 3(4m+ 1 + s) + s.
Therefore,

6m+ 2s+ 2 = 2q + 2 =

n∑
i=1

zi

≥
4m+1+s∑

i=1

(z3i−2 + z3i−1 + z3i)

= 2× (4m+ 1 + s) = 8m+ 2s+ 2.

It implies that m = 0, and so n = 4q + 3 = 4s + 3. Since n ≥ 4, s > 0. In
addition, m = 0 implies that

∑n
i=1 zi =

∑4m+1+s
i=1 (z3i−2 + z3i−1 + z3i). Then∑s

i=1 zn−s+i = 0 (since s > 0, the summation is well-defined). Since zi ≥ 0
for each vertex vi, we conclude that zn = 0. By relabeling the vertices, we can
show that zi = 0 for any vertex vi, a contradiction. Hence (i) implies (iii). �

4. Concluding Remarks

In this paper, we introduce the rigid and relaxed paired-domination games
and investigate their cores. In addition, we study the cores of paired-domination
games on paths and cycles if their vertex weight functions are the constant
function 1. We present several research questions related to this topic.

• Find an algorithm for finding a core element of a rigid (or relaxed)
paired-domination game if it is balanced.
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• Comparing Example 1 and Theorem 3.1, it follows that the relaxed
paired-domination game on a weighted path is not always balanced.
We may ask if the rigid paired-domination game on a weighted path is
always balanced.
• Characterize the core of the rigid (or relaxed) paired-domination game

associated with an interval graph or a circular arc graph.
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