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WEIGHTED NORM ESTIMATE FOR THE GENERAL HAAR

SHIFT OPERATORS VIA ITERATING BELLMAN FUNCTION

METHOD

Daewon Chung

Abstract. It is shown that for a general Haar shift operator, and a weight

in the A2 weight class, we establish the weighted norm estimate which
linearly depends on A2-characteristic [w]A2

. Although the result is now

well known, we introduce the new method, which is called the iterated

Bellman function method, to provide the estimate.

1. Introduction

It is well known that a Calderón-Zygmund operator is bounded on the weighted
Lebesgue space Lp(w) if the weight w satisfies the famous Muckenhoupt Ap-
condition.

[w]Ap
:= sup

Q

(
1

|Q|

∫
Q

w dx

)(
1

|Q|

∫
Q

w−1 dx

)
<∞ . (1)

We call the quantity [w]Ap
the Ap-characteristic of the weight w. It has been an

long time conjecture finding the best constant in terms of the Ap-characteristic
[w]Ap . That is, one looks for a function φ(x), sharp in terms of its growth, such
that:

‖Tf‖Lp(w) ≤ Cφ([w]Ap
)‖f‖Lp(w) ,

where T stands for the general Calderón-Zygmund operator. It was called A2-
conjecture, because knowing a bound on L2(w) is crucial due to the extrap-
olation theorem. Most recently, it was shown in [4] and [5] based on many
beautiful and recently developed techniques, [8], [6], [9], and so on. For more
detail arguments and brief history, we refer [4] and [5]. Roughly speaking, the
authors in [4] and [5] solved the A2-conjecture by showing the linear estimate
of the general Haar shift operator on L2(w) with polynomial dependence on
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its complexity via Corona decomposition. In this paper, we present the linear
estimate of the general Haar shift operator on L2(w) by different technique, so
called iterated Bellman function method. However, we could not get the poly-
nomial dependence on the complexity. It will be discussed at the end of this
paper.

Through out the paper, we denote a constant by C which may change line
by line and we indicate its dependence on parameters using a parenthesis. In
Section 2 we will introduce notations, some basic facts, and useful lemmas and
theorems. We also present the main result of this paper. In Sections 3 and 4
we prove our main result. Finally in Section 5 we will discuss about our result
and more.

2. Preliminaries

2.1. Definitions and Main Results

For the simplicity and convenience, we will deal only in the real line, R.
Intervals of the form [kw−j , (k + 1)2−j) for some integers j, k are called dyadic
intervals. Let us denote D the collection of all dyadic intervals, and let us
denote D(J) the collection of all dyadic subintervals of J . We say the positive
almost everywhere and locally integrable function w, a weight, satisfies the A2

condition if:

[w]A2
:= sup

I
〈w〉I〈w−1〉I <∞,

where the supremum is taken over all intervals and 〈w〉I stands for the average
of w over I. For any interval I ∈ D, there is a Haar function defined by

hI(x) =
1

|I|1/2
(
χI+(x)− χI−(x)

)
,

where χI dentes the characteristic function of the interval I. It is well known
fact that the Haar system {hI}I∈D is an orthonormal system in L2 . Let us
introduce a proper orthonormal system for L2(w) defined by

hwI (x) =
1

w(I)1/2

[
w(I−)1/2

w(I+)1/2
χI+(x)− w(I+)1/2

w(I−)1/2
χI−(x)

]
,

where w(I) =
∫
I
w . We defined the weighted inner product by 〈f, g〉w =

∫
fgw .

Then, every function f ∈ L2(w) can be written as

f =
∑
I∈D
〈f, hwI 〉w hwI ,

where the sum converges a.e. in L2(w) . Moreover,

‖f‖2L2(w) =
∑
I∈D
|〈f, hwI 〉w|2 .
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We now defined the weighted average 〈f〉J,w := w(J)−1
∫
J
f(x)w(x)dx . For

I ) J , hwI is constant on J . We denote this constant by hwI (J). Then we can
write the weighted averages

〈f〉J,w =
∑

I∈D:I)J
〈g, hwI 〉whwI (J) .

As it was introduced in [5], we say gI is a generalized Haar function if it is a
linear combination of an usual Haar function and χI .

Definition 1. For m,n ∈ N, a general Haar shift operator with complexity
τ = max{m,n} is defined by

Sf :=
∑
I∈D

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|−1〈f, gK〉gJ , (2)

where gK and gJ are generalized Haar functions for the intervals K and J
respectively and normalized, that is

‖gL‖L∞ · ‖gJ‖L∞ ≤ 1 .

Definition 2. We say an operator given by (2) is an elementary Haar shift
operator of

(a) type 1, if gK and gJ has a mean zero property ,
(b) type 2, if one of gK and gJ have a mean zero property but the other

one does not, and they have a property: for all L ∈ D,

1

|L|
∑

I∈D(L)

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|‖gK‖2L∞‖gJ‖2L∞ <∞ , (3)

(c) type 3, if gK and gJ does not have a mean zero property and they have
a property: for all L ∈ D,

1

|L|
∑

I∈D(L)

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|‖gK‖L∞‖gJ‖L∞ <∞ . (4)

Note that one can easily see that the dyadic paraproduct,

πbf :=
∑
I∈D
〈b, hI〉〈f〉IhI ,

is an elementary Haar shift operator of type 2 and the property (3) is provided
by b ∈ BMO. That is, for any L ∈ D,

1

|L|
∑

I∈D(L)

〈b, hI〉2 ≤ ‖b‖BMO .

Since
π∗bπbf =

∑
I∈D
〈b, hI〉2〈f〉J

χI
|I|

=
∑
I∈D
〈b, hI〉2|I|−2〈f, χI〉χI ,
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the composition of an adjoint of dyadic paraproduct and dyadic paraproduct,
π∗bπb, is an elementary Haar shift operator of type 3. Let us define the constant
B := max{B2, B3}, where

B2 := sup
L∈D

1

|L|
∑

I∈D(L)

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|‖gK‖2L∞‖gJ‖2L∞

B3 := sup
L∈D

1

|L|
∑

I∈D(L)

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|‖gK‖L∞‖gJ‖L∞ .

We will indicate the type by using a subscript. For all i = 1, 2, 3 and interval
L ∈ D, we define the restricted Haar shift operator SLi ,

SLi f :=
∑

I∈D(L)

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|−1〈f, gK〉gJ .

Then we are going to prove the following Theorem.

Theorem 2.1. For all i = 1, 2 , intervals L, and weight w ∈ A2, there exists a
constant C(m,n) such that

‖SLi (w−1χL)‖L2(w) ≤ C(m,n)[w]A2w
−1(L)1/2 . (5)

Theorem 2.2. Let S be a general Haar shift operator with complexity τ . Then,
for all f ∈  Lp(w) , there exists a constant only depend on τ and B such that

‖Sf‖Lp(w) ≤ C(τ,B)[w]
max{1, 1

p−1}
Ap

‖f‖Lp(w) .

2.2. Lemmas and Theorems

We now introduce several useful lemmas and theorems. One can find the
detail proof in the indicated references, otherwise we will present the proof. We
also use the notation ∆Iw := (〈w〉I+ − 〈w〉I−)/2 .

Lemma 2.3 ([12]). If w ∈ A2 then there exist a constant C such that for all
dyadic intervals J ∈ D ,∑

I∈D(J)

|∆Iw|2|I|
〈w〉I

≤ C[w]A2w(J) .

Lemma 2.4 ([10]). For all dyadic intervals J and all weight w,∑
I∈D(J)

|∆Iw|2|I|
〈w〉3I

≤ Cw−1(J) .

Lemma 2.5 ([1]). For any weight w, so that w−1 is a weight as well, if {λI}
is a Carleson sequence of nonnegative numbers, that is, there exists a constant
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Q > 0 such that for all dyadic intervals J ∈ D ,∑
I∈D(J)

λI ≤ Q|J | ,

then ∑
I∈D(J)

λI
〈w〉I

≤ 4Qw−1(J) .

Furthermore, if w ∈ A2 then we have∑
I∈D(J)

λI〈w〉I ≤ 4Q[w]A2w(J) .

Lemma 2.6 ([1]). If w ∈ A2 then there exist a constant C > 0 such that for
all dyadic intervals J ∈ D ,∑

I∈D(J)

|∆Iw|2〈w−1〉I |I|
〈w〉I

≤ C[w]A2
|J | .

The following lemma is the one of our main result in this paper, which will
be proved in Section 4.

Lemma 2.7. There is a positive constant C(m) so that for all dyadic intervals
J ∈ D

1

|J |
∑

I∈D(J)

|I|〈w〉−7/4
I 〈w−1〉1/4I

(m+1∑
j=1

2m+1−j
∑

K∈D(I):|K|=21−j |I|

∆Kw

)2

≤ C(m)〈w〉1/4〈w−1〉1/4J ,

whenever w is a weight. Moreover, if w ∈ Ad2 then for all J ∈ D

1

|J |
∑

I∈D(J)

|I|〈w〉−1
I 〈w

−1〉I
(m+1∑

j=1

2m+1−j
∑

K∈D(I):|K|=2−m|I|

∆Kw

)2

≤ C(m)[w]Ad
2
.

Lemma 2.7 is, in fact, a general version of Lemma 2.6, i.e. Lemma 2.6 is
the special case (j = 1) of Lemma 2.7. The case of j = 2 was also appeared in
[2]. One of the main tool is a two-weighted bilinear embedding theorem. The
original version of such a theorem appeared in [7] and the authors presented the
necessary and sufficient conditions. The author in [10] presented the following
Theorem, which contains more easy necessary condition but not sufficient, by a
Bellman function method. It is not hard to see that this version is a corollary
of the original theorem in [7].

Theorem 2.8 (Bilinear Embedding Theorem,[10]). Let w and u be weights so
that 〈w〉I〈u〉I ≤ Q for all intervals I and let {αI} be a non-negative sequence
so that the three estimates below hold for all J∑

I∈D(J)

αI
〈w〉I

≤ Qu(J),
∑

I∈D(J)

αI
〈u〉I

≤ Qw(J), and
∑

I∈D(J)

αI ≤ Q|J | .
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Then there is C such that for all f ∈ L2(w) and g ∈ L2(u)∑
I∈D

αI〈f〉I,w〈g〉I,v ≤ CQ‖f‖L2(w)‖g‖L2(v) .

3. Proof of main theorem

We will prove Theorem 2.1 for each type separately.

3.1. The case: Haar shift operator of type 1

We are going to show (5) for m > n by duality arguments, that is for any
positive function f ∈ L2(w) there exist a constant C such that∣∣∣∣〈SLi (w−1χL), f

〉
w

∣∣∣∣ ≤ C[w]A2
w−1(L)1/2‖f‖L2(w) . (6)

To see the case: m = n, one needs almost same arguments with the case m > n,
and the other case: m < n is in fact the dual operator of the case m > n . We
now fix the index m > n and split (6) by two parts.∣∣∣∣〈SL2 (w−1χL), f

〉
w

∣∣∣∣ ≤ ∣∣∣∣〈SL2,1(w−1χL), f

〉
w

∣∣∣∣+

∣∣∣∣〈SL2,2(w−1χL), f

〉
w

∣∣∣∣
=

∣∣∣∣〈 ∑
I∈D(L)

∑
J,K∈D(I);J⊂K

|J|=2−m|I|, |K|=2−n|I|

|I|−1〈w−1, hK〉hJ , f
〉
w

∣∣∣∣
+

∣∣∣∣〈 ∑
I∈D(L)

∑
J,K∈D(I);J∩K=∅

|J|=2−m|I|, |K|=2−n|I|

|I|−1〈w−1, hK〉hJ , f
〉
w

∣∣∣∣
= L1 + L2 .

Expanding f in the weighted Haar system in L2(w) , we have

L1 =

∣∣∣∣ ∑
I∈D(L)

∑
J,K∈D(I);J⊂K

|J|=2−m|I|, |K|=2−n|I|

|I|−1〈w−1, hK〉
∑
I′∈D
〈f, hwI′〉w〈hJ , hwI′〉w

∣∣∣∣ .(7)

We will estimate the sum (7) uniformly on J and K. So, we now fix J
and K so that J ⊂ K ⊂ I and 2m|J | = 2n|K| = |I| . Since 〈hJ , hwI′〉w
can be non-zero only for J ⊆ I ′, we spilt the sum (7) into m + 2 sums,
I ′ = J, J1, ..., Jm−n = K,Jm−n+1 = K1, ..., Jm = I and I ′ ) I . (Jk means
J ’s k-the parent).

Let J ⊆ K, hJ be a normalized Haar function with mean zero property, and
hwK be a usual weighted Haar function (not normalized). Then one can easily
check that

|〈hJ , hwK〉w| ≤ ‖hJ‖L∞w(J)1/2 .
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For the sum I ′ = {Jk}k=0,...,m, we have

∑
I∈D(L)

m∑
k=0

|I|−1〈w−1, hK〉〈f, hwJk〉〈hJ , hwJk〉w

=

( ∑
I∈D(L)

m∑
k=0

〈f, hwJk〉2
)1/2( ∑

I∈D(L)

m∑
k=0

|I|−2〈w−1, hK〉2〈hJ , hwJk〉2w
)1/2

≤ (m+ 1)1/2‖f‖L2(w)

( ∑
I∈D(L)

m∑
k=0

|I|−2|K|2‖hK‖2L∞ |∆Kw
−1|2‖hJ‖2L∞w(J)

)1/2

≤ (m+ 1)1/2‖f‖L2(w)

( ∑
I∈D(L)

m∑
k=0

|K|2

|I|2
|I||∆Kw

−1|2〈w〉I
)1/2

≤ C2−n(m+ 1)[w]
1/2
A2
‖f‖L2(w)

( ∑
I∈D(L)

|I||∆Kw
−1|2

〈w−1〉I

)1/2

≤ C(m+ 1)2−nC(n))1/2[w]A2
w−1(L)1/2‖f‖L2(w) .(8)

For the sum I ′ ) I, we have∣∣∣∣ ∑
I∈D(L)

|I|−1〈w−1, hK〉
∑

I′:I′)I
〈f, hwI′〉w〈hJ , hwI′〉w

∣∣∣∣
≤

∑
I∈D(L)

|I|−1|〈w−1, hK〉| |〈w, hJ〉|〈f〉I,w〈χL〉I,w−1 .(9)

Although the sum is taken over the interval I, for each I, K and J are uniquely
determined. By Bilinear Embedding Theorem, our desired estimate for (9)
holds, provided the following three embedding conditions hold:∑

I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|〈w〉I

≤ C[w]A2
w−1(L)(10)

∑
I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|〈w−1〉I

≤ C[w]A2w(L)(11)

∑
I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|

≤ C[w]A2
|L| .(12)

Embedding condition (10): After applying Cauchy-Schwarz inequality, using
Lemma 2.3 and Lemma 2.4 yields that.∑
I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|〈w〉I
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=
∑

I∈D(L)

√
|K| |J |
|I| |I|

‖hK‖L∞
√
|K||∆Kw

−1|‖hJ‖L∞
√
|J ||∆Jw|

〈w〉I

≤ 2
−(m+n)

2

( ∑
I∈D(L)

|∆Kw
−1|2|K|〈w〉K

)1/2( ∑
I∈D(L)

|∆Jw|2|J |
〈w〉2I〈w〉K

)1/2

≤ 2
−(m+n)

2 [w]
1/2
A2

( ∑
I∈D(L)

|∆Kw
−1|2|K|

〈w−1〉K

)1/2(
23m−n

∑
I∈D(L)

|∆Jw|2|J |
〈w〉3J

)1/2

≤ C2
−(m+n)

2 + 3m−n
2 [w]A2

(w−1(JL)w−1(KL))1/2

≤ C2m−n[w]A2
w−1(L) .

Embedding condition (11): One can also uses Cauchy-Schwarz inequality, Lemma
2.4 and Lemma 2.3∑
I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|〈w−1〉I

=
∑

I∈D(L)

√
|K| |J |
|I| |I|

‖hK‖L∞
√
|K||∆Kw

−1|‖hJ‖L∞
√
|J ||∆Jw|

〈w−1〉I

≤ 2
−(m+n)

2

( ∑
I∈D(L)

|∆Kw
−1|2|K|

〈w−1〉3I

)1/2( ∑
I∈D(L)

|∆Jw|2|J |〈w−1〉I
)1/2

≤ 2
−(m+n)

2

(
23n

∑
I∈D(L)

|∆Kw
−1|2|K|

〈w−1〉3K

)1/2( ∑
I∈D(L)

|∆Jw|2|J |〈w−1〉I〈w〉J
〈w〉J

)1/2

≤ C2
−(m+n)

2 + 3n
2 + m

2 ([w]A2
w(KL))1/2

( ∑
I∈D(L)

|∆Jw|2|J |
〈w〉J

)1/2

≤ C2n[w]A2
(w(KL)w(JL))1/2

≤ C2n[w]A2
w(L) .

Embedding condition (12):∑
I∈D(L)

|〈w−1, hK〉| |〈w, hJ〉|
|I|

=
∑

I∈D(L)

|K| |J |
|I| |I|

‖hK‖L∞
√
|I||∆Kw

−1|‖hJ‖L∞
√
|I||∆Jw|

≤ 2−(m+n)

( ∑
I∈D(L)

|∆Kw
−1|2〈w〉I |I|
〈w−1〉I

)1/2( ∑
I∈D(L)

|∆Jw|2〈w−1〉I |I|
〈w〉I

)1/2

≤ 2−(m+n)(C(m)C(n))1/2[w]A2 |L| .
Here the last inequality uses Lemma 2.7.

We now turn to the proof for the term L2. Again, we expand f in the
weighted Haar system in L2(w) . Then we have
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L2 =

∣∣∣∣ ∑
I∈D(L)

∑
J,K∈D(I);J∩K=∅

|J|=2−m|I|, |K|=2−n|I|

|I|−1〈w−1, hK〉
∑
I′∈D
〈f, hwI′〉w〈hJ , hwI′〉w

∣∣∣∣ .
(13)

Similarly with the term L1, we will estimate L2 uniformly on J and K after
we fix it such that K ⊆ I, J ⊂ I, and J∩K = ∅ . One can easily see that Kn = I
and Jm = I . We now split the sum (13) into m+ 1 sums, I ′ = J, J1, ..., Jm = I
and I ′ ) I . For the sums I ′ = J, J1, ..., Jm , we have∑
I∈D(L)

m∑
k=0

|I|−1〈w−1, hK〉〈f, hwJk〉〈hJ , hwJk〉w

≤
( ∑
I∈D(L)

m∑
k=0

〈f, hwJk〉2
)1/2( ∑

I∈D(L)

m∑
k=0

|I|−2〈w−1, hK〉2〈hJ , hwJk〉2w
)1/2

≤ (m+ 1)1/2‖f‖L2(w)

( ∑
I∈D(L)

m∑
k=0

‖I|−2|K|2‖hK‖2L∞ |∆Lw
−1|2‖h‖2L∞w(J)

)1/2

≤ (m+ 1)1/2‖f‖L2(w)

( ∑
I∈D(L)

m∑
k=0

|K|2

|I|2
|I||∆Kw

−1|2〈w〉I
)1/2

≤ C2−2(m+ 1)[w]
1/2
A2
‖f‖L2(w)

( ∑
I∈D(L)

|I||∆Kw
−1|2

〈w−1〉I

)1/2

≤ C2−2C(n)1/2(m+ 1)[w]A2‖f‖L2(w)w
−1(L)1/2 .(14)

For the sum I ′ ) I , we use the same argument with the estimate of L1 then we
have the same upper bounds with (8), i.e.∣∣∣∣ ∑

I∈D(L)

〈w−1, hK〉
∑

I′:I′)I
〈f, hwI′〉w〈hJ , hwI′〉w

∣∣∣∣
≤ C2−n((m+ 1)C(n))1/2[w]A2

w−1(L)1/2‖f‖L2(w) .

3.2. The case: Haar shift operator of type 2

We now assume that gJ has a mean zero property and gK does not. Then
we can write gJ = ‖gJ‖L∞ · hJ = aJhJ and gK = ‖gK‖L∞ · χK = aKχJ . The
other case is an adjoint of this. We will prove for each J and K such that
2m|J | = 2n|K| = |I|, and we will denote aI = aJaK for each fixed J and K.
Then∣∣∣∣〈∑

I∈D
|I|−1〈w−1χI , hJ〉hK , f

〉
w

∣∣∣∣ ≤ ∑
I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I|〈f〉I,w〈χI〉I,w−1

≤ C[w]A2
w−1(L)1/2‖f‖L2(w) .(15)
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Here the inequality (15) is provided by the following three embedding conditions.
To see the each embedding condition, we need to use the property (3) which is,
in this setting,

∑
I∈D(L) a

2
I |I| ≤ C|L| .∑

I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I|
〈w〉I

≤ C[w]A2
w−1(L) ,(16)

∑
I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I|

〈w−1〉I
≤ C[w]A2

w(L) ,(17)

∑
I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I| ≤ C[w]A2

|L| .(18)

Embedding condition (16): We use Lemma (2.3) and Lemma(2.5) with λI =
|aI |2|I| .∑
I∈D(L)

|aI ||∆Iw
−1||I| ≤

( ∑
I∈D(L)

|aI |2|I|〈w−1〉I
)1/2( ∑

I∈D(L)

|∆Iw
−1|2|I|

〈w−1〉I

)1/2

≤ 4C[w]A2
w−1(L) .

Embedding condition (17): We use Lemma (2.5) twice, first with λI = |aI |2|I|
and second with λI = |aI |2|I|/〈w−1〉I , and Lemma (2.6).

∑
I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I|

〈w−1〉I
≤
( ∑
I∈D(L)

|aI |2|I|〈w〉I
〈w−1〉I

)1/2( ∑
I∈D(L)

|∆Iw
−1|2|I|〈w〉I
〈w−1〉I

)1/2

≤ 4C[w]A2w(L) .

Embedding condition (18): We use the assumption and Lemma (2.6).

∑
I∈D(L)

|aI ||∆Iw
−1|〈w〉I |I| ≤

( ∑
I∈D(L)

|aI |2|I|〈w〉I〈w−1〉I
)1/2( ∑

I∈D(L)

|∆Iw
−1|2|I|〈w〉I
〈w−1〉I

)1/2

≤ C[w]A2
|L| .

3.3. The case: Haar shift operator of type 3

We now turn to the Haar shift operator with non-zero mean case.

Sf =
∑
I∈D

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

|I|−1〈f, gK〉gJ

=
∑
I∈D

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

aKaJ |I|−1〈f, χK〉χJ ,
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where aK = ‖hK‖L∞ and aJ = ‖hJ‖L∞ . We are going to prove an analog of
(6). That is,∣∣∣∣〈∑

I∈D

∑
J,K∈D(I)

|J|=2−m|I|,|K|=2−n|I|

aKaJ |I|−1〈w−1χL, χK〉χJ , f
〉
w

∣∣∣∣
≤ C[w]A2w

−1(L)1/2‖f‖L2(w) .(19)

Similarly with mean zero case, we fix m and n and estimate uniformly on K
and J . Then we need to prove the follow.∣∣∣∣ ∑

I∈D(L)

aI |I|−1w−1(K)〈f〉J,ww(J)

∣∣∣∣ ≤ C[w]A2
w−1(L)1/2‖f‖L2(w) . (20)

∣∣∣∣ ∑
I∈D(L)

aI |I|−1w−1(K)〈f〉J,ww(J)

∣∣∣∣ ≤ ∑
I∈D(L)

|aI | |I|〈w−1〉I〈w〉I〈f〉I,w〈χL〉I,w−1

≤ [w]A2

∑
I∈D(L)

|aI | |I|〈f〉I,w〈χL〉I,w−1

≤ C[w]A2w
−1(L)1/2‖f‖L2(w) .(21)

Inequality (21) is provided by Bilinear Embedding Theorem and the following
three embedding conditions:∑

I∈D(L)

|aI ||I|
〈w〉I

≤ Cw−1(L)(22)

∑
I∈D(L)

|aI ||I|
〈w−1〉I

≤ Cw(L)(23)

∑
I∈D(L)

|aI ||I| ≤ C|L| .(24)

Embedding condition (24) can be deduced from the Carleson condition of aKaL .
Then the other conditions are easy consequence of Lemma 2.5 with (24).

4. Proof of the iterating 4th root Lemma

Let us consider the function B(u, v) = 4
√
uv and the domain Dm which is

given by

Dm = {(u, v) ∈ R2
+ |uv ≥ 1/2m} .

It is known [1] that B(u, v) satisfies that the following differential inequality in
D0

−(du, dv)d2B(u, v)

(
du
dv

)
≥ 1

8

v1/4

u7/4
|du|2 . (25)
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Furthermore, this implies that the following convexity condition. For all (u, v),
(u±, v±) ∈ D1 ,

B(u, v)− B(u+, v+) +B(u−, v−)

2
≥ 1

18 · 27/4

v1/4

u7/4
(∆1

1u)2 , (26)

where u = (u+ + u−)/2, v = (v+ + v−)/2 and ∆1
1u = (u+ − u−)/2 . One can

find the constant in (26) by using (25) and Taylor’s theorem. We now consider
the function

A1(u, v,∆1
1u) := (27 · 27/4)B(u, v) +B(u+ ∆1

1, u) +B(u−∆1
1u, v) .

We also consider the domain

F1 = {(u, v,∆1
1u) | (u, v), (u+ ∆1

1u, v), and (u−∆1
1u, v) ∈ D1} .

Then, A1(u, v,∆1
1u) satisfies the following size and convexity conditions. For

all (u, v,∆1
1u) ∈ F1 ,

0 ≤ A1(u, v,∆1
1u) ≤ (C1 + 2) 4

√
uv . (27)

A1(u, v,∆1
1u)− A1(u+, v+,∆

2
2u) +A1(u−, v−,∆

1
2u)

2

≥ D1
v1/4

u7/4

(
4(∆u1

1)2 + 2(∆1
2u)2 + 2(∆2

2u)2
)
.(28)

This appeared in [2]. Here ∆2
2u = (u++ − u+−)/2 and ∆1

2u = (u−+ − u−−)/2 .
The size condition (27) can be seen easily using the definitions of A1 and B and

the inequality ( 4
√
u+ 4
√
v)/2 ≤ 4

√
(u+ v)/2 . To see more detail, let us consider

the function

A2(u,v,∆1
1u,∆

1
2u,∆

2
2u) := aA1(u, v,∆1

1u, v) +B(u+ ∆1
1u+ ∆2

2u, v)

+B(u+ ∆1
1u−∆2

2u, v) +B(u−∆1
1u+ ∆1

2u, v) +B(u−∆1
1u−∆1

2u, v) .

on the domain F2. Here (u, v,∆1
1u,∆

1
2u,∆

2
2u) ∈ F2 means all pairs (u, v), (u+

∆1
1, v), (u − ∆1

1, v), (u + ∆1
1u + ∆2

2u, v), (u + ∆1
1u − ∆2

2u, v), (u − ∆1
1u +

∆1
2u, v) and (u−∆1

1u−∆1
2u, v) belong to D2 . Then A2 has the size property:

if (u, v,∆1
1u,∆

1
2u,∆

2
2u) ∈ F2, then

0 ≤ A2(u, v,∆1
1u,∆

1
2u,∆

2
2u) ≤ (C2 + 22) 4

√
uv , (29)

with C2 = a(C1 + 2), and the convexity property

A2(u, v,∆1
1u,∆

1
2,∆

2
2u)− A2(u+, v+,∆

2
2u,∆

3
3u∆4

3u) +A2(u−, v−,∆
1
2u,∆

1
3u∆2

3u)

2

≥ D2
v1/4

u7/4

(
8(∆1

1u)2 + 4

2∑
i=1

(∆i
2u)2 + 2

4∑
i=1

(∆i
3u)2

)
,(30)

where ∆1
3u = u−−+−u−−−

2 , ∆2
3u = u−++−u−+−

2 , ∆3
3u = u+−+−u+−−

2 , and ∆4
3u =

u+++−u++−
2 .



WEIGHTED NORM ESTIMATE VIA ITERATING METHOD 647

Proof of (30). We rewrite the left hand side of the inequality (30) as follows.

aA1(u, v,∆1
1u) +B(u+ ∆1

1u+ ∆2
2u, v) +B(u+ ∆1

1u−∆u2
2, v)

+B(u−∆1
1u+ ∆1

2u, v) +B(u−∆1
1u−∆2

1u, v)

− 1

2

(
aA1(u+, v+,∆

2
2u) +B(u+ + ∆2

2u+ ∆4
3u, v+)

+B(u+ + ∆2
2u−∆u4

3, v+) +B(u+ −∆2
2u+ ∆3

3u, v+)

+B(u+ −∆2
2u−∆3

3u, v+) + aA1(u−, v−,∆
1
2u)

+B(u− + ∆1
2u+ ∆2

3u, v−) +B(u− + ∆1
2u−∆2

3u, v−)

+B(u− −∆1
2u+ ∆1

3u, v−) +B(u− −∆1
2u−∆1

3u, v−)
)

= a
(
A1(u, v,∆1

1u)− 1

2

(
A1(u+, v+,∆

2
2u) +A1(u−, v−,∆

1
2u)
))

(31)

+B(u++, v) +B(u+−, v) +B(u−+, v) +B(u−−, v)

− 1

2

(
B(u+ + ∆2

2u+ ∆4
3u, v+) +B(u+ + ∆2

2u−∆4
3u, v+)

+B(u+ −∆2
2u+ ∆3

3u, v+) +B(u+ −∆2
2u−∆3

3u, v+)

+B(u− + ∆1
2u+ ∆2

3u, v−) +B(u− + ∆1
2u−∆2

3u, v−)

+B(u− −∆1
2u+ ∆1

3u, v−) +B(u− −∆1
2u−∆1

3u, v−)
)
.

Using Taylor’s theorem and the differential convexity condition (25) of B(u, v),
we can estimate the following. For α ≤ (k − 1)u and |β| < v ,

B(u+ α,v + β) = B(u, v) +∇B(u, v)(α, β)t

+

∫ 1

0

(1− s)(α, β)d2B(u+ sα, v + sβ)(α, β)tds

≤ B(u, v) +∇B(u, v)(α, β)t − 1

8

∫ 1

0

(1− s) (v + sβ)1/4

(u+ sα)7/4
α2 ds

≤ B(u, v) +∇B(u, v)(α, β)t − α2

8(ku)7/4

∫ 1

0

(1− s)(v + sβ)1/4ds

≤ B(u, v) +∇B(u, v)(α, β)t − α2v1/4

8(ku)7/4

∫ 1

0

(1− s)(1 + s
β

v
)1/4 ds

≤ B(u, v) +∇B(u, v)(α, β)t − 4α2v1/4

8 · 9(ku)7/4
.(32)

Here we use the differential convexity condition (25) and the following simple
estimate:

for |γ| < 1 ,

∫ 1

0

(1− s)(1 + γs)1/4 ds ≥
∫ 1

0

(1− s)5/4 ds =
4

9
.
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One can easily check that, for i = 1, 2 and j = 1, 2, 3, 4 ,

|∆1
1u|+ |∆i

2ui|+ |∆
j
3u| < 7u and |∆1

1v| < v .

Using inequality (32), we can obtain the following lower bounds for the term
(31) .

− 4B(u, v) +
4

2 · 8 · 9(23)7/4

v1/4

u7/4

(
8(∆1

1u)2 + 4

4∑
i=1

(∆i
2u)2 + 2

4∑
i=1

(∆i
3)2
)

(33)

On the other hand,

B(u+ α, v) = B(u, v) + ∆B(u, v)(α, 0)t +

∫ 1

0

(1− s)(α, 0)d2B(u+ sα, v)(α, 0)t ds

= B(u, v) + ∆B(u, v)(α, 0)t − 3v1/4α2

16

∫ 1

0

1− s
(u+ sα)7/4

ds .(34)

If u+ α ≥ 0 then 0 < u− su ≤ u+ sα , for 0 < s < 1 , and∫ 1

0

1− s
(u+ sα)7/4

ds ≤
∫ 1

0

1− s
(u− su)7/4

ds =
1

u7/4

∫ 1

0

(1− s)−3/4 ds =
4

u7/4
.

Thus, we have the lower bound of (34):

B(u+ α, v) ≥ B(u, v) +∇B(u, v)

(
α
0

)
− 3v1/4α2

4u7/4
.

Since u++ = u + ∆1
1u + ∆2

2u, u+− = u + ∆1
1u − ∆u2

2, u−+ = u − ∆1
1u +

∆2
1u1, u−− = u−∆1

1u−∆1
2u, are all positive, we have

B(u++, v) +B(u+−, v) +B(u−+, v) +B(u−−, v)

≥ 4B(u, v) +∇B(u, v)

(
∆1

1u+ ∆2
2u

0

)
+∇B(u, v)

(
∆1

1u−∆2
2u

0

)
+∇B(u, v)

(
−∆1

1u+ ∆1
2u

0

)
+∇B(u, v)

(
−∆1

1u−∆1
2u

0

)
− 3v1/4

4u7/4

(
(∆1

1u+ ∆2
2u)2 + (∆1

1u−∆2
2u)2 + (−∆1

1u+ ∆u1
2)2

+ (−∆1
1u−∆1

2u)2
)

= 4B(u, v)− 3v1/4

4u7/4

(
4(∆1

1u)2 + 2(∆2
2u)2 + 2(∆1

2u)2
)
.(35)

Using (28), (33), and (35), we can estimate the left hand side of (30) as follows.

a

36 · 47/4

v1/4

u7/4

(
(4∆1

1u)2 + 2(∆1
2u)2 + 2(∆2

2u)2
)

+
4

2 · 8 · 9(23)7/4

v1/4

u7/4

(
8(∆1

1u)2 + 4

2∑
i=1

(∆i
2u)2 + 2

4∑
i=1

(∆i
3)2
)
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− 3v1/4

4u7/4

(
4(∆1

1u)2 + 2(∆2
2u)2 + 2(∆1

2u)2
)

≥
( a

36 · 47/4
− 3

4

) v1/4

u7/4

(
4(∆1

1u)2 + 2(∆1
2u)2 + 2(∆1

2u)2
)

+
1

2
· 1

8(23)7/4
· 4

9

v1/4

u7/4

(
8(∆1

1u)2 + 4

4∑
i=1

(∆i
2u)2 + 2

4∑
i=1

(∆i
3)2
)

Choosing a = 27·47/4 return the convexity condition (30) withD2 = 1
36·87/4 . �

4.1. General case

Let us define function inductively,

Am(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m ) = amAm−1(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m−1) +
∑
σ∈Σm

B(uσ, v) ,

where {∆i
ju}

i=1,...,2j−1

j=1,...,m means 2m+1 − 1 tuples of ∆i
ju, for instance,

{∆i
ju}

i=1,...,2j−1

j=1,2,3 = {∆1
1u,∆

1
2u,∆

2
2u,∆

1
3u,∆

2
3u,∆

3
3u,∆

4
3u} .

And Σm is a signature set, that is each entry of Σm is a m combination of ±,
for example,

Σ3 = {−−−,−−+,−+−,−++,+−−,+−+,++−,+++} = (+Σ2)∪(−Σ2) .

In general Σm = (+Σm−1) ∪ (−Σm−1) where ±Σk means adjoining ± on the
left of the given k-tulpe in Σk to create a (k + 1)-tuple

Lemma 4.1. For m ≥ 2 , if Am−1 satisfies the following size and convexity

condition. For all (u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m−1) ∈ Fm−1,

0 ≤ Am−1 ≤ (Cm−1 + 2m−1) 4
√
uv (36)

and

Am−1(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m−1)

−
Am−1(u+, v+, {∆i

ju}
i=1,...,2j−2

j=2,...,m ) +Am−1(u−, v−, {∆i
ju}

i=2j−2+1,...,2j−1

j=2,...,m )

2

≥ Dm−1
v1/4

u7/4

( m∑
j=1

2m+1−j
2j−1∑
i=1

(∆i
mu)2

)
.(37)

Then for all (u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m ) ∈ Fm, Am satisfies the following size and
convexity properties.

0 ≤ Am(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m ) ≤ (am(Cm−1 + 2m−1) + 2m) 4
√
uv (38)

and

Am(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m )
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−
Am(u+, v+, {∆i

ju}
i=1,...,2j−2

j=2,...,m+1) +Am(u−, v−, {∆i
ju}

i=2j−2+1,...,2j−1

j=2,...,m+1 )

2

≥ Dm
v1/4

u7/4

m+1∑
j=1

2m+1−j
2j+1−1∑
i=1

(∆i
ju)2 .(39)

Proof. For the size condition (38), one can easily verify using∑
σ∈Σm

B(uσ, v) ≤ 2mB(u, v) = 2m 4
√
uv ,

which is due to ( 4
√
u+ + 4

√
u−)/2 ≤ 4

√
(u+ + u−)/2 = 4

√
u . We now rewrite the

left hand side of the inequality (39) as follow.

amAm−1(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m−1) +
∑
σ∈Σm

B(uσ, v)

− 1

2

(
amAm−1(u+, v+, {∆i

ju}
i=1,...,2j−1

j=2,...,m ) +
∑

σ∈Σm−1

B(u+σ, v+)

+ amAm−1(u−, v−, {∆i
ju}

i=1,...,2j−1

j=2,...,m ) +
∑

σ∈Σm−1

B(u−σ, v−)

)

= am

(
Am−1(u, v, {∆i

ju}
i=1,...,2j−1

j=1,...,m−1)(40)

− 1

2

(
Am−1(u+, v+, {∆i

ju}
i=1,...,2j−1

j=2,...,m ) +Am−1(u−, v−, {∆i
ju}

i=1,...,2j−1

j=2,...,m )

))
+
∑
σ∈Σm

B(uσ, v)(41)

− 1

2

( ∑
σ∈Σm−1

B(u+σ, v+) +
∑

σ∈Σm−1

B(u−σ, v−)

)
.(42)

By the assumption (37), we already have the lower bounds for the term (40).
We now estimate the lower bounds for the term (41) and (42) separately. Since,
for all uσ, σ ∈ Σm, 0 ≤ uσ = u+ αm and 0 < u− su ≤ u+ sαm, we have

∑
σ∈Σm

B(uσ, v) ≥ 2mB(u, v)− 3v1/4

4u7/4

( m∑
j=1

2m+1−j
2j−1∑
i=1

(∆i
ju)2

)
, (43)

by using (34) 2m times. For the term (42), using (32) and observations u±σ <
2mu and |∆v| ≤ v , we can obtain the following lower bounds.

− 1

2

( ∑
σ∈Σm

B(u+σ, v+) +
∑
σ∈Σm

B(u−σ, v−)

)
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≥ −2mB(u, v) +
v1/4

36 · (2mu)7/4

(m+1∑
j=1

2m+2−j
2j−1∑
i=1

(∆i
ju)2

)
.(44)

Combining (37), (43), and (44), we can estimate the lower bound for the left
hand side of (39),

amDm−1
v1/4

u7/4

( m∑
j=1

2m+1−j
2j−1∑
i=1

(∆i
mu)2

)
− 3v1/4

4u7/4

( m∑
j=1

2m+1−j
2j−1∑
i=1

(∆i
ju)2

)

+
v1/4

36 · (2mu)7/4

(m+1∑
j=1

2m+2−j
2j−1∑
i=1

(∆i
ju)2

)
Choosing am = 3

4Dm−1
and Dm = 1

36·(2m)7/4
prove the Lemma. �

From Lemma 4.1, we can state the follows. Let us define

Am(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m ) :=

m∑
j=1

27m+1−j 2
7(m+1−j)(m+j)

8 Bj−1 +Bm ,

where Bm =
∑
σ∈Σm

B(uσ, v), and B0 = B(u, v) , on the domain Fm. Here

(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m ) ∈ Fm means all pairs (u, v) and (uσ, v) ∈ Dm , for all
σ ∈ Σj , j = 1, ...,m . Then Am has the size property,

0 ≤ Am ≤
( m∑
j=1

2j−127m+1−j 2
7(m+1−j)(m+j)

8 + 2m
)

4
√
uv , (45)

and the convexity property,

Am(u, v, {∆i
ju}

i=1,...,2j−1

j=1,...,m )

−
Am(u+, v+, {∆i

ju}
i=1,...,2j−2

j=2,...,m+1) +Am(u−, v−, {∆i
ju}

i=2j−2+1,...,2j−1

j=2,...,m+1 )

2

≥ 1

36 · (2m)7/4

v1/4

u7/4

m+1∑
j=1

2m+1−j
2j+1−1∑
i=1

(∆i
ju)2 .(46)

Then usual Bellman function arguments will return the Lemma 2.7.

5. Remarks

In the present text we only deal with a general Haar shift operator in the
real line. However, one can extend the same result to the multi-variable case,
Rn , similarly with [11]. The author in [11] extended her Hilbert transform
(one-dimensional) result to the Riesz transform (multi-dimensional) result with
careful modifications. Also, one may define a general Haar shift operator with
different Haar system. The second author presented, in [3], the way to defined
the dyadic operator with different Haar system (Wilson’s Haar system) but more
convenience and he extend the one-dimensional proof to the multi-dimensional
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result with the same Bellman function. Furthermore, the argument in [3] allows
to obtain dimensionless bounds in the anisotropic case.

In fact, our main result (5) depends on exponentially in the complexity. Thus
we can not get the estimate for the general Caldeón-Zygmund operators, but
we may be able to get the estimate for the Caldeón-Zygmund operators with
sufficiently smooth kernel. To overcome the exponential dependence of the
complexity, one may need to revisit Lemma 2.7. In Lemma 2.7 we estimate the
the too big quantity, which is bigger than the sum of differences of the weight
in the all dyadic interval K ∈ D(I) such that 2−m|I| ≤ |K| ≤ |I|. Thus careful
modification can be return another solution of the A2-conjecture.
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