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Abstract
Fault localization techniques help locate faults in source codes by exploiting collected test information and have shown

promising results. To precisely locate faults, the techniques require a large number of test cases that sufficiently exercise

the executable statements together with the label information of each test case as a failure or a success. However, during

the process of software development, developers may not have high-coverage test cases to effectively locate faults. With

the test case generation techniques, a large number of test cases without expected outputs can be automatically generated.

Whereas the execution results for generated test cases need to be inspected by developers, which brings much manual

effort and potentially hampers fault-localization effectiveness. To address this problem, this paper presents a method to

select a few test cases from a number of test cases without expected outputs for result inspection, and in the meantime

selected test cases can still support effective fault localization. The experimental results show that our approach can sig-

nificantly reduce the number of test cases that need to be inspected by developers and the effectiveness of fault localiza-

tion techniques is close to that of whole test cases.

Category: Smart and intelligent computing
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I. INTRODUCTION

Software testing plays an indispensable role in guaran-

teeing the quality of software in software engineering.

Once the program fails during the process of testing,

developers often use debugging methods to find and

eliminate faults in the program. Traditionally, developers

often manually insert output statements in the program or

set breakpoints using debugging tools to find the location

of faults. Both the methods require developers to have a

deep understanding of the structure of the program. Fur-

ther research [1] has indicated that traditional debugging

is a very tedious and time-consuming activity in software

testing, which becomes a heavy burden for developers. In

order to reduce the heavy labor of manual debugging,

many coverage-based fault localization (CBFL) tech-

niques [2-4] have been proposed. Typically, such tech-

niques first collect dynamic execution information when

the program is exercised by test cases. Then based on the

collected test information, including coverage informa-

tion and execution results, they calculate the likelihood of

program statements that contain faults according to statis-

tical models. The basic intuition of statistical models is

that faulty statements are correlated higher with program
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failure via coverage information and hence statements

that are executed by more failed test cases and fewer

passed test cases are often more suspicious. Finally, pro-

gram statements are ranked in descending order accord-

ing to the suspicion of containing faults, and statements

that are ranked higher are given a higher priority for

developers to check whether the statements contain fault

or not. Recent researches [5-8] show that such fault local-

ization techniques can effectively reduce the number of

statements that need to be checked, thereby reducing the

manual labor of debugging.

To effectively locate faults in the program, CBFL tech-

niques require a large number of test cases with high cov-

erage of program statements together with execution

results of each test case. However, in some debugging

scenarios, such as processes of software development,

there are only a few test cases with execution results

available for CBFL techniques. If only a few test cases

are used for CBFL, it is not very effective [3]. As the

development of test case generation techniques [9, 10], a

large number of test cases with high coverage of state-

ments can be automatically generated. However, the exe-

cution results of test cases still need to be labeled as a

failure or a success. Determining whether the program

behaves correctly for a test case is the problem of test

oracles [11]. Traditionally developers can manually inspect

execution results for all test cases. However, it is very

time-consuming and tedious to finish such work and it

increases the burden for applying CBFL techniques in

practice. To automatically determine the test oracles,

researchers [12] have proposed to construct automated

test oracles. However, for most programs, constructing

automated test oracles is very complicated and still

requires much manual effort. As a result, in order to apply

CBFL techniques effectively when execution results of

many test cases are not available, the test oracles will

cause additional manual effort, which would severely

increase the cost of debugging.

To alleviate the burden of applying CBFL in such sce-

narios, this paper will study how to select a small number

of test cases for further result inspection from a large

number of test cases without test oracles. It is expected

that the selected test cases are a small portion of the orig-

inal test suite but still can provide sufficient information

for locating faults. The approach proposed in this paper

uses a dynamic basic block as units to represent each test

case. Once there exists any test case that can divide the

set of dynamic basic blocks, such test cases are candi-

dates for result inspection. The approach tends to select

the test case that can divide the set of dynamic basic

blocks evenly as well as cover more dynamic basic

blocks that are exercised by a high rate of failed test

cases. Experimental results show that our approach can

select only a few test cases for inspection while the effec-

tiveness of fault localization is close to that when whole

test cases are used.

The rest of this paper is organized as follows: Section

II describes related work to fault localization. Section III

presents the current approach in detail. Section IV

describes experimental design. Section V presents the

empirical results and analysis. Section VI discusses some

issues in the approach. Finally, a conclusion to the results

is presented in Section VII.

II. RELATED WORK

In this section, we briefly review previous studies

related to fault localization.

Since this paper focuses on selecting a small portion of

original test suites, our work is somewhat related to test

selection and prioritization techniques. Researchers have

conducted extensive work to study test selection and pri-

oritization techniques. Test selection aims at selecting

some tests from a given test suite for retesting a modified

program by focusing on the modified code, whereas test

prioritization schedules tests for execution in order to

achieve some specific goal. Since existing test selection

techniques aim at improving efficiency of software test-

ing, they may not be effective at improving fault-localiza-

tion effectiveness [8]. Meanwhile, some researchers try

to improve test prioritization techniques so that priori-

tized tests can be used for effective fault localization.

Gonzalez-Sanchez et al. [13] proposed a test prioritization

based on information gain. Their experimental results indi-

cate fault-localization effectiveness based on 47% of the

top test cases that are close to that of the entire set of test

cases. However, the method depends on the estimation of

distribution of faults, which is difficult to obtain. To solve

the above problem, Gonzalez-Sanchez et al. [14] further

proposed a test prioritization technique based on an ambi-

guity group. Their technique groups together the state-

ments with same coverage information, and then construct

a probability model on the likelihood of each group con-

taining faulty. Experimental results indicate that in most

cases the method is more effective. Gong et al. [15] pro-

posed a test case prioritization strategy called Diversity

Maximization Speedup. The strategy orders a set of unla-

beled test cases in a way that maximizes the effectiveness

of a fault localization technique. However, the strategy

requires some test cases to be labeled by developers in

the initial stage, which may limit its scope of application.

Although test case prioritization techniques toward fault

localization can prioritize test cases in a way that a small

portion of test cases can achieve considerable fault local-

ization effectiveness, it still requires developers to deter-

mine how many test cases should be used for fault

localization.

The test oracle problem often hampers the fault-local-

ization effectiveness when there are no sufficient test

cases with test oracles available for fault localization.

Artzi et al. [16] proposed a new directed test-generation
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technique to generate small test suites for fault localiza-

tion. They showed that the technique preserves fault-

localization effectiveness while reducing the test-suite

size by 86.1%. To mitigate the impact of the test oracle

problem on fault localization, Xie et al. [12] applied a

metamorphic slice to CBFL techniques. However, meta-

morphic testing requires developers to have a deep under-

standing of programs, and thus it may not be effective for

complex programs. Hao et al. [17] proposed three strate-

gies on reducing test cases for result inspection to save

the effort of developers from tedious test-result checking

when applying CBFL techniques. The basic idea is that

statements can be divided into different equivalence

classes based on coverage information. In their strategies,

test cases that satisfy one of the following conditions are

reserved: 1) the test case that can generate more equiva-

lence classes; 2) the test case that can evenly generate

equivalence classes; 3) the test case that can generate

more equivalence classes which are covered by more

failed test cases. Once there are no test cases that can

divide equivalence classes, the test selection process ter-

minates. Their experimental results indicate that their

approach can help developers inspect the result of a

smaller subset of test inputs, whose fault-localization

effectiveness is close to that of the whole test collection.

However, equivalence classes are based on statements,

which may not distinguish statements properly. Hence

the strategies may still yield too many test cases for result

inspection. 

In this paper, we extend our previous work [18] to

present more details about our approach and conduct

additional experiments on more subject programs, includ-

ing large-scale programs, which are conducted to verify

the effectiveness of the approach. Further discussions on

our approach are also presented.

III. OVERVIEW OF PROPOSED APPROACH
 

Since debugging activity often starts when developers

have at least one failed test case beforehand, it is assumed

that developers have initially had one failed test case,

which will facilitate the subsequent discussion. Typically,

there may exist some test cases in which developers have

checked test results before encountering at least one

failed test case. The common debugging scenario would

include some failed test cases along with several passed

test cases. However, such situations where there are sev-

eral test cases and at least one failed test case can be

viewed as a situation occurring during our test selection

process. Thus, when presenting our approach, it is

assumed that there is only one failed test case in the

beginning of our approach, which is denoted as ts.

Fig. 1 depicts an overview of our approach applied to

CBFL. The approach consists of three steps. 1) Prepro-

cess: a large number of test cases without test oracle are

generated by a test case generation tool, and the coverage

information is collected automatically in this step. 2) Test

Fig. 1. Overview of the proposed method applied to CBFL.
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case selection: a test case is selected for result inspection

at a specific time. Developers label the selected test case

as passed if its result is the same as the expected output

test or failed if it is not. Once the selected test cases are

sufficient for fault localization, the selection process ter-

minates. Otherwise the selection process continues. 3)

Fault localization: the selected test cases, along with the

initial failed test case, are used for fault localization.

The following subsection will describe our approach in

detail.

A. Preprocess

The basic idea behind CBFL techniques is that they

exploit how program entities are correlated with program

failures via statistically analyzing coverage information.

If the test cases are lacking, it may fail to distinguish

between faulty statements and non-faulty statements by

coverage information. Thus, it is expected that selected

test cases can provide sufficient coverage information in

order to distinguish statements. According to such princi-

ple, in the beginning of our approach a large number of

test cases are generated by a test case generation tool to

obtain sufficient coverage information, which are then

used as a test suite for a later selection procedure. For the

subsequent discussion, the generated test cases are

denoted as Tg; however test results are not available at

this step. 

Suppose the faulty program P consists of m statements,

which can be denoted as P = {s1, s2, s3, …, sm}. The test

set running against P is denoted as T = . The cover-

age information is collected through the stub method

automatically after execution of every test case in T. In

this paper, statement coverage is collected and the infor-

mation is represented as a n×m matrix MS, in which n is

the size of the test set T and m is the number of state-

ments in program P. Each element cij in MS denotes

whether the statements sj are covered by the test ti or not,

and whose value is set to 1 if it is covered, otherwise it is 0.

Thus, a large number of test cases with coverage infor-

mation are obtained at this step, but the test results are not

available. For the subsequent discussion, we denote the

test set in which test cases have been selected and test

results have been inspected as Tr. Especially, in the begin-

ning of the approach, Tr = {ts}.

B. Test Case Selection Strategy

1) Dynamic Basic Block

Our approach aims at selecting as few test cases as

possible to distinguish faulty statements from non-faulty

statements. Essentially, different levels of coverage make

statements distinguishable from each other. However,

some of the statements in the program could always be

exercised by the same set of test cases in the test suite T.

The CBFL techniques may fail to distinguish such state-

ments. Note that it is important to group such statements

together, and thus based on such sets of statements it will

be clearer to measure the ability of test cases to distin-

guish the statements.

In this paper, we will adopt the concept of dynamic

basic block (DBB), proposed by Baudry et al. [19], to

represent such sets of statements in the program. 

DEFINITION 1 (Dynamic basic block). A dynamic

basic block (DBB) is a set of statements in the program P

that are all covered by the same test cases in the test suite T.

 

According to the definition of dynamic basic block, it

can be easily constructed once the coverage information

of the test suite T is available. After the set of dynamic

basic blocks is constructed based on the coverage infor-

mation, our approach will represent each test case based

on dynamic basic blocks. Specifically, the following pro-

cedure is conducted.

(1) A set of dynamic basic blocks is generated accord-

ing to the coverage information of test cases in T,

which is denoted as B(T)={B1, B2, B3,…, Bw} and Bi

represents a dynamic basic block.

(2) Each test case ti in T is represented as a W-dimen-

sional vector according to whether ti exercises the

corresponding dynamic basic block or not during

its execution: where bij (1≤j≤w) is set to 1 if ti cov-

ers the dynamic basic block Bj otherwise its value

is set to 0.

ti = < bi1, bi2, ..., biw >

2) Group and Indistinguishable Group

Note that the statements in the same dynamic basic

block are exercised by the same test cases; thus after rep-

resenting test cases using B(T), the ability of test cases to

distinguish statements will be based on dynamic basic

blocks.

In general, to distinguish two dynamic basic blocks, it

is expected that these two dynamic basic blocks are exe-

cuted either by a different number of failed test cases or

by a different number of passed test cases; otherwise it is

difficult for CBFL techniques to distinguish these two

dynamic basic blocks. To further discuss our approach,

some concepts are presented to capture such features.

DEFINITION 2 (Group). A set of dynamic basic blocks

g is called a group if and only if it satisfies the following

condition: any two dynamic basic blocks in the set g are

covered by the same number of failed test cases and the

same number of passed test cases in the test set Tr.

DEFINITION 3 (Indistinguishable group). A group g is

called an indistinguishable group if and only if it satisfies

the following condition: if u is an element of the group g,

and v is not an elements of the group g, then there exists

Tg ts∪
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at least one test case in the test set Tr that it covers either

u or v.

According to the above two definitions, the set of

groups G(Tr) generated by test set Tr is not unique, while

the set of indistinguishable groups IG(Tr) generated by Tr

is uniquely determined. To uniquely determine the set of

groups for the test set Tr, we set G(Tr) equal to IG(Tr)

before the test selection process starts. Given a test case t

in Tg, for a group g in the current G(Tr), if t partially cov-

ers some dynamic basic blocks in g, we refer to this as

that the test t divides the group g. In this situation, g can

be split into two sub-groups based on coverage

information, one of which is covered by t while the other

is not. Note that only such test cases in Tg are useful for

fault localization, since they divide some groups in G(Tr)

and thus more dynamic basic blocks may be distin-

guished from each other.

3) Detail Approach

We first present how our proposed approach selects a

test case from Tg at a time for result inspection, which is

based on two basic intuitions. An effective selection strat-

egy should not only reduce the size of selected test cases,

but also support fault localization when the selected test

cases are used.

To reduce the size of the selected test cases, it is

expected that after selecting a few test cases from Tg, the

current groups in G(Tr) can’t be divided by any test cases

in Tg. Consider a test case t in Tg; suppose t can divide

some groups in G(Tr), which are denoted as DG(Tr,t). For

any group gi in DG(Tr,t), gi is divided into two sub-groups

gi1 and gi2. Denote |gi| as the number of dynamic basic

blocks in group gi. If the difference between |gi1| and |gi2|

is large, it may have to select more test cases from Tg to

divide the larger sub-group. If the difference is small,

fewer test cases may be needed to divide the sub-groups.

Thus, for any group gi in DG(Tr,t), it is expected that the

selected test case t can divide gi evenly such that fewer

test cases are selected out for the result inspection. The

following formula is first introduced:

(1)

 represents the number of dynamic basic

blocks in the smaller sub-group. If t does not divide the

group gi, then  equals to 0. This formula will

be then used in a later strategy to assess evenness of

division.

To support fault localization, it is expected that selected

test cases can distinguish non-faulty statements from

faulty statements as much as possible. Specifically, if the

selected test cases can divide groups that potentially con-

tain faulty statements, then such division is more useful

for fault localization. Thus, we use a method to calculate

how likely each group in G(Tr) contains faulty state-

ments. In this paper, Op metric [4] is used. The formula of

Op is as follows:

(2)

Where aef(gi) is the number of failed test cases in Tr

that cover the group gi and aep(gi) is the number of passed

test cases in Tr that cover the group g. PT is the number of

passed test cases in Tr. S(gi) calculates how likely the

group gi are correlated with faults based on test informa-

tion of Tr.

 Thus, our selection strategy is based on above two

intuitions. Suppose the groups of the current G(Tr) can be

denoted as {g1, g2, …, gz}. When a test case t in Tg is cho-

sen for result inspection, the test case t must satisfy the

following formula: 

(3)

As can be seen from the formula,  guides

the strategy to select the test case that can divide groups

evenly while S(gi) guides the strategy to select the test

case that can divide groups which potentially contain

faulty statements.

Based on the above analysis, Fig. 2 presents a detailed

selection algorithm for our approach. The algorithm

requires one failed test case as well as a large number of

test cases without test oracle as inputs. The codes in lines

1-3 add the initial failed test case to Tr, and then generate

Split t, gi( ) min gi1 , gi2( )=

Split t, gi( )

Split t, gi( )

S gi( ) aef gi( ) aep gi( )
PT 1+
---------------–=

 arg max
t T

g
∈

S gi( ) * Split t, gi( )
i 1=

G T
g

( )

∑  
⎩ ⎭
⎨ ⎬
⎧ ⎫

Split t, gi( )

Fig. 2. Test selection algorithm to support fault localization.
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B(T) based on coverage information of T. In line 5 the

group G(Tr) is initialized to IG(Tr). Then in lines 6-14 test

cases in Tg are selected iteratively according to the for-

mula (2). Lines 9-10 check whether the selected test case

can divide some groups in G(Tr) or not. If division

occurs, lines 12-13 add the selected test case to Tr and

remove it from Tg. If no division occurs, the selection

procedure breaks. Line 16 further checks whether the size

of indistinguishable groups generated by the current Tr is

equal to that of G(Tr). If it is equal, it indicates that the

groups in IG(Tr) cannot be divided by Tg any more. In

such situations the algorithm returns the selected test

cases. If it does not, it indicates that there may still exist

some test cases in Tg that can divide indistinguishable

groups in IG(Tr), then the algorithm returns to line 5 and

continues to select test cases.

C. Fault Localization 

In this paper, two representative fault localization tech-

niques are used to investigate the impact of the proposed

approach. Tarantula is proposed by Jones et al. [2]; the

technique gives high suspicion to the statements that are

covered by many failed tests and few passed tests. Differ-

ent from Tarantula, Ochiai [3] also takes the absence in

failed executions into account and gives high weight to

failed tests in calculating suspicion. Since the focus of

this paper is not on fault localization techniques, only two

representative techniques are used. In future works, we

plan to investigate the impact of the proposed approach

on more fault localization techniques.

IV. EXPERIMENTAL DESIGN

A. Subject Programs

To evaluate whether our approach can work well, Sie-

mens Test Suite and Unix programs are both used as our

subject programs. Siemens Test Suite contains seven

small programs and Unix contains three large programs.

These programs have been extensively used to evaluate

effectiveness of CBFL techniques in previous studies [2-

5]. Table 1 lists the detailed information for each pro-

gram. The Versions column lists the number of faulty ver-

sions for each subject program. The column LOC shows

the lines of code for each program. The column Size of TS

represents the total number of available test cases in the

test pool for each program. 

To validate the effectiveness of the proposed method,

first a failed test case is chosen randomly from the test

suite T from each faulty version of the program, which is

used as the initial failed test case ts, and then the remain-

ing test cases in the test suite are used as Tg. Since different

initial failed test cases may lead to different experimental

results and in order to reduce the bias that different initial

failed test cases may cause, every experiment is repeated

20 times. That is to say initial failed test cases are ran-

domly chosen every time, and the final experimental

results are averaged based on these experiments.

B. Evaluation Metrics

To verify the effectiveness of the proposed approach, it

is expected that our approach should select a small por-

tion of test cases for result inspection. Meanwhile, the

selected test cases should ensure a certain level of fault-

localization effectiveness. The following metrics are used

in this paper.

1) Percentage of Test Cases Selected

Where |Tr|–1 denotes the number of selected test cases

for result inspection, and |Tg| denotes the number of test

cases in Tg that are not selected. A smaller SR indicates

that fewer test cases are chosen for result inspection.

2) Effectiveness of Fault Localization:

Where |V| is the size of executable statements in the

program P, and |Vexamined| is the number of statements that

the developers have to check following suspicious rank

generated by CBFL techniques in order to find the fault.

A small value of Expense indicates that fault localization

is effective. In this paper, an Expense reduction score

∆Expense=Expense–Expense' is also used to measure rel-

ative effectiveness improvement; where Expense refers to

Expense value using the whole test cases for CBFL tech-

niques while Expense' refers to Expense value using the

SR
Tr 1–

Tg Tr 1–+
-------------------------=

Expense
Vexamined

V
------------------  × 100%=

Table 1. Detailed information of the subject programs

Subject Versions LOC Size of TS

print_tokenens 4 565 4130

print_tokens2 10 508 4115

replace 27 563 5542

schedule 4 368 2650

schedule2 8 307 2710

tcas 35 173 1608

tot_info 23 406 1052

flex 23 5217 567

grep 21 12653 809

gzip 15 6573 213

LOC: lines of code for each program, TS: total number of available test

cases.
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test cases selected by our approach. A positive value of

∆Expense indicates that the effectiveness of fault local-

ization gets improved after applying our approach.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, several experiments are conducted to

study the effectiveness of our proposed approach and the

raw results of the experiments across the subject pro-

grams are shown in detail for further analysis. The fol-

lowing questions are investigated: 1) Can the proposed

method help programmers select a few test cases for

result inspection from a large number of test cases whose

execution results are not available? 2) Can the test cases

selected by the proposed approach effectively locate

faults when some typical fault localization techniques are

applied? 3) Compared with other techniques, is the pro-

posed approach better than related works? 

A. Percentage of Test Cases Selected

This section investigates whether our method can

select a few test cases from a large number of test cases

for result inspection. The experimental results are shown

using a boxplot. Figs. 3(a) and (b) list the distribution of

SR on Siemens and Unix programs, respectively.

From Fig. 3, it can be observed that the size of test

cases selected by our method is much smaller than the

size of the original test suite. Moreover, SR ranges from

0.12% to 2.9% for all faulty programs. For the same pro-

gram, SR of different faulty versions fluctuates slightly.

Take replace for example. SR varies in the range [0.27%,

1.24%], and SR of 88.9% faulty versions is smaller or

equal to 1%. Furthermore, it can be seen that SR for

tot_info programs is greater than those of other programs.

It is because the size of the test suite in tot_info is smaller.

From Fig. 3(b), we can observe that most of SR in

Unix programs is greater than 5%. One reason is that the

sizes of the test suite in Unix programs are usually small.

The other reason is that Unix programs are more complex

than Siemens programs, hence more test cases are needed

to divide as many groups as possible.

Fig. 4 lists the distribution of SR over all programs.

The x-axis denotes the range of SR, and the y-axis

denotes the percentage of program versions that satisfy

the corresponding range of SR. It can be observed that

SR of 64% faulty versions is smaller than 1.0%, of which

15.8% versions is smaller than 0.5%. In summary, it can

be concluded that the proposed approach can significantly

Fig. 4. Distribution of SR over all program. SR: percentage of test case selected.

Fig. 3. Distribution of SR for subject programs: (a) Siemens, (b) Unix. SR: percentage of test case selected.
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reduce the test cases needed to be inspected by developers.

 

B. Effectiveness of Fault Localization

This section investigates whether the selected test

cases can support effective fault localization. Fig. 5(a)

and (b) list the distribution of ∆Expense on two typical

fault localization techniques Tarantula and Ochiai,

respectively. From these figures, it can be observed that

the ∆Expense rises or falls around 0%, which indicates

that chosen test cases in various faulty versions reveal

various improvement of fault-localization effectiveness.

Take Tarantula and schedule2 for example. Note that

more than half of the faulty versions in schedules reveal

better fault localization than that when original test suites

are used, which implies the effectiveness of fault local-

ization can be improved using only a few test cases. It is

because that research [20] indicates that redundancy may

exist in a high-coverage test suite. The redundancy may

introduce a negative impact on fault localization. More-

over, coincidentally correct test cases may also exist in

test suite, which may introduce inverse impact on fault

localization [21]. The method proposed in this paper only

selects a few tests from the original test suite, which

potentially reduce redundancy and coincidentally correct

tests that may affect effectiveness of fault localization.

Furthermore, the proposed method aims to select test

cases that can distinguish statements in a program, thus it

is reasonable that the approach can improve fault-local-

ization effectiveness. Overall, by using our approach

54.7% faulty versions get improved or is close to that of

the whole test suites when Tarantula is applied, 61%

when Ochiai is applied. Based on Figs. 4 and 5, it is obvi-

ous that using the proposed method, developers need to

check only a small portion of all the test cases, while the

reduced test information can still support effective fault

localization for most programs.

Furthermore, by comparing the effectiveness of fault

localization on the same program versions using Taran-

tula or Ochiai, it is obvious that using the same chosen

test cases as inputs, Ochiai is more effective in locating

faults than Tarantula. Table 2 lists results of ∆Expense

for two techniques on faulty versions of schedules. We

can observe that among the versions in which fault local-

ization improves, Ochiai is quicker than Tarantula at

finding faults, such as versions v6 and v10. The same

phenomenon can be also seen on the versions in which

Fig. 5. Distribution of Expense reduction scores: (a) Tarantula, (b) Ochiai. ∆Expense: expense reduction score.

Table 2. Fault-localization effectiveness on schedule2

programs

schedule2 Tarantula (%) Ochiai (%)

v1 31.25 32.81

v2 -4.38 -0.78

v3 0 0

v4 0 0

v5 -13.07 -11.54

v6 13.95 19.38

v7 -4.30 -0.78

v10 0.76 10.50
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fault localization get deteriorated, such as versions v2

and v5. This is because compared with Tarantula, Ochiai

gives more weight to the failed test cases in calculating

the suspicion of statements, and thus it can locate faults

effectively even when there is little test information.

Therefore, when test information is limited, Ochiai

behaves in more stable manner than Tarantula in locating

faults. We recommend that when the method proposed in

this paper is applied to fault localization techniques, a

more effective fault localization should always be the

first choice.

In summary, from the above experimental results, we

can conclude that the proposed approach selects only a

few test cases for result inspection, and meanwhile the

selected test cases can support effective fault localization.

C. Comparison with Other Related Techniques

1) Comparison with Random Selection Method

Random selection method randomly selects some test

cases from test suite as a reduced test set for each faulty

version. To compare with the random selection method,

suppose the method selects the same number of test cases

as our proposed method does for each version. To reduce

the bias that random selection may yield, for each version

20 random selections are made, and the averaged results

are used as final results.

Fig. 6 lists the expense of fault localization yielded by

two methods using two fault localization techniques, in

which y-axis denotes averaged Expense for correspond-

ing programs. From these figures, it can be observed that

selecting the same number of test cases for fault localiza-

tion, our method is more effective than random selection

method at finding faults. Take Tarantula for example. In

replace programs, the averaged Expense is 4.9% less

than random method. Specifically, each faulty version of

replace program contains about 244 executable code

lines. That is to say, when the test cases selected by our

method are used, on average developers check 12 code

lines less than random selection method. In complex

Unix programs, the improvement is much more obvious.

In summary, when Tarantula is used, the Expense of our

method is 6% less than random method on average. The

same phenomenon also can be seen when Ochiai is used

as the fault localization technique. It indicates our method

can select test cases that are more conducive to fault

localization than a random method.

2) Comparison with Peer Technique

To further illustrate the effectiveness of our approach,

we compare our approach with peer work. Hao et al. [17]

proposed three test case reduction strategies for fault

localization. Among the techniques they proposed, the

third strategy can assist fault localization techniques,

locating more faults than the other two. Therefore, their

third technique is used for comparison and is denoted as

‘HAO-S3’. Our approach is denoted as ‘EDS’. Table 3

lists experimental results of our approach and HAO-S3,

respectively.

From Table 3, it can be seen that our approach can

Fig. 6. Fault localization effectiveness: (a) Tarantula, (b) Ochiai. Expense: effectiveness of fault localization.
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select fewer test cases for fault localization while the

effectiveness of fault localization is close to or even

improves over that of HAO-S3 on most of the programs.

Specifically, Table 4 lists the experimental data on some

faulty versions, in which Tarantula technique is applied.

Take print_tokens2_v3 for illustration. Twenty-one test

cases are selected for result inspection by our approach,

and by Tarantula using the selected test cases the faulty

statement ranks in at 9th place. Compared with our

approach, HAO-S3 chooses 19 more test cases while the

faulty statement is ranked at the 11th place.

To further investigate the difference on percentages of

selected test cases for two approaches, we conduct Wil-

coxon signed-rank test on all the subjects programs.

Table 5 lists the p-value on individual program. It can be

seen that all but print_tokens programs of the p-values

are smaller than 0.05, which indicates the improvements

are significant at the 5% level. Note that the data in

Table 3 indicates that our approach selects fewer test

cases than HAO-S3, thus it can be concluded that our

approach can significantly reduce the test cases used for

effective fault localization compared with HAO-S3. The

reason is that our approach employs dynamic basic blocks

to measure whether statements are distinguishable, and

Op metric is used to estimate the fault probability of

groups. Moreover, groups and indistinguishable groups

are used to assess division of test cases, which to some

extent reduce redundant test cases while test cases that

are helpful for fault localization are not discarded.

VI. DISCUSSION
 

In this section, we move to further discussions on the

approach proposed in the paper. 

The approach proposed in this paper assumes that

when a test case is chosen, the developers check the exe-

cution result of this test, and that the check is correct.

However, since developers may have different under-

Table 3. Comparison of SR and Expense for different approaches

Program Approach
SR 

(%)

Tarantula 

(%)

Ochiai 

(%)

print_tokens EDS 0.54 14.8 13.7

HAO-S3 0.71 12.0 12.8

print_tokens2 EDS 0.83 16.0 13.9

HAO-S3 1.00 17.3 14.1

replace EDS 0.71 8.1 7.5

HAO-S3 1.17 9.4 7.8

schedule EDS 0.98 6.3 6.4

HAO-S3 2.63 7.7 7.7

schedule2 EDS 0.83 6.01 5.91

HAO-S3 1.37 6.06 6.06

tcas EDS 0.42 5.15 5.05

HAO-S3 0.56 5.15 5.05

tot_info EDS 2.02 21.3 18.9

HAO-S3 2.35 23.5 20.2

flex EDS 11.6 43.1 40.2

HAO-S3 13.4 43.6 42.1

grep EDS 9.92 23.5 21.4

HAO-S3 11.3 24.1 22.4

gzip EDS 7.51 14.6 11.5

HAO-S3 8.67 15.0 13.1

SR: percentage of test case selected.

Table 4. Comparison on some faulty versions for two approaches

Faulty version
EDS HAO-S3

No. of test cases Rank of faulty statement No. of test cases Rank of faulty statement

print_tokens_v2 11 9 14 7

print_tokens2_v3 21 9 40 19

replace_v1 15 5 19 5

tcas_v37 11 2 11 8

Table 5. p-value for programs

Program p-value

print_tokens 6.25×10-1

print_tokens2 3.85×10-2

replace 3.38×10-5

schedule 1.25×10-2

schedule2 2.25×10-2

tcas 2.14×10-3

tot_info 1.24×10-2

flex 2.13×10-2

grep 4.12×10-2

gzip 3.11×10-2
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standings of program specification, the check may not be

always correct. In this paper, for simplified discussion on

the effectiveness of our approach, we assume the check is

always correct. Further investigation on the situation

when the developers make mistakes in labeling the exe-

cution result of tests and its impact on fault localization

will be conducted in the future.

When our approach plans to select one test case from

Tg for inspection, the test case to be chosen is implicitly

correlated with previous test cases selected. This is

because our approach gives high priority to the test case

that can divide the dynamic basic blocks that are covered

by a high rate of failed test cases. However, our approach

cannot guarantee that failed test cases are always selected

out of Tg. Once the test suite Tr doesn’t contain extra

failed test cases, our approach tends to select test cases

that can divide dynamic basic blocks as evenly as possi-

ble, which may not be effective for later fault localiza-

tion. This is one disadvantage of our approach. In the

future, we plan to use program slice to analyze the rela-

tions between statements and the initial failed test case,

and use the fault proximity approach proposed by Liu et

al. [22] to increase the probability of selecting failed tests

further.

Finally, our approach can be applied to most of the

coverage based fault localization techniques. This is

because such techniques use the same inputs as the tech-

niques applied in this paper to calculate the possibility of

statements that contain faults. However, some fault local-

ization techniques, e.g. [23, 24], assume the distribution

of the coverage of statements on passed and failed test

cases. Such assumptions require a large number of test

cases with execution results available to support. How-

ever, our approach only selects a small portion of test

cases that may not be sufficient to support the assump-

tion. We will do more work in the future to study the

commonality of our approach.

VII. CONCLUSION
 

In this paper, we propose a strategy to select test cases

for result inspection from a large number of test cases

without test oracles so as to support effective fault local-

ization. DBBs are employed to represent each test case in

T. Then groups and indistinguishable groups are intro-

duced to gather dynamic basic blocks. Our approach

tends to select the test case that can divide the groups

evenly as well as cover dynamic basic blocks that poten-

tially contain faulty statements. Once a test case in Tg can

no longer divide the indistinguishable groups, the selection

procedure terminates. The selected test cases together

with the initial failed test case are then used for fault

localization. To evaluate the effectiveness of our approach,

experiments are conducted using Siemens Test Suites and

Unix programs. Experimental results show that our

approach can significantly reduce the test cases required

for result inspection while the effectiveness of fault local-

ization is close to or even improves over that of all the

test cases. Experiments on comparison with related work

also indicate our approach is more effective.
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