DOI QR코드

DOI QR Code

THE JEU DE TAQUIN ON THE SHIFTED RIM HOOK TABLEAUX

  • Received : 2015.07.22
  • Accepted : 2015.09.09
  • Published : 2015.09.30

Abstract

The Schensted algorithm first described by Robinson [5] is a remarkable combinatorial correspondence associated with the theory of symmetric functions. $Sch{\ddot{u}}tzenberger's$ jeu de taquin[10] can be used to give alternative descriptions of both P- and Q-tableaux of the Schensted algorithm as well as the ordinary and dual Knuth relations. In this paper we describe the jeu de taquin on shifted rim hook tableaux using the switching rule, which shows that the sum of the weights of the shifted rim hook tableaux of a given shape and content does not depend on the order of the content if content parts are all odd.

Keywords

References

  1. E. A. Bender and D. E. Knuth, Enumeration of plane partitions, J. Combin. Theory (A) 13 (1972), 40-54.
  2. A. Garsia and S. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory (A) 31 (1981), 289-339. https://doi.org/10.1016/0097-3165(81)90062-5
  3. C. Greene, An extension of Schensted's theorem, Adv. in Math., 14 (1974), 254-265. https://doi.org/10.1016/0001-8708(74)90031-0
  4. D. E. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34 (1970), 709-727. https://doi.org/10.2140/pjm.1970.34.709
  5. G. de B. Robinson, On the representations of the symmetric group , Amer. J. Math., 60 (1938) 745-760. https://doi.org/10.2307/2371609
  6. B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62-103. https://doi.org/10.1016/0097-3165(87)90047-1
  7. C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math., 13 (1961), 179-191. https://doi.org/10.4153/CJM-1961-015-3
  8. J. R. Stembridge, Shifted tableaux and projective representations of symmetric groups, Advances in Math., 74 (1989), 87-134. https://doi.org/10.1016/0001-8708(89)90005-4
  9. D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), 211-247. https://doi.org/10.1016/0097-3165(85)90088-3
  10. M. P. Schutzenberger, Quelques remarques sur une construction de Schensted, Math., Scand. 12 (1963), 117-128. https://doi.org/10.7146/math.scand.a-10676
  11. G. Viennot, Une forme geometrique de la correspondance de Robinson-Schensted, in Combiatoire et Representation du Groupe Symetrique, D. Foata ed., Lecture Notes in Math., Vol. 579, Springer-Verlag, New York, NY, 1977, 29-58.