DOI QR코드

DOI QR Code

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases

  • M, Shalini (Department of Bioinformatics, School of Bioengineering, SRM University) ;
  • Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
  • Received : 2015.07.01
  • Accepted : 2015.09.25
  • Published : 2015.09.30

Abstract

CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.

Keywords

References

  1. Y. Wanga, J. Busch-Petersen, F. Wang, T. J. Kiesow, T. L. Graybill, J. Jin, Z. Yang, J. J. Foley, G. E. Hunsberger, D. B. Schmidt, H. M. Sarau, E. A. Capper-Spudich, Z. Wu, L. S. Fisher, M. S. McQueney, R. A. Rivero, and K. L. Widdowson, Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 19, pp.114-118, 2009. https://doi.org/10.1016/j.bmcl.2008.11.008
  2. A. G. Nair, M. K. C. Wong, Y. Shu, Y. Jiang, C.-H. Jenh, S. H. Kim, D.-Y. Yang, Q. Zeng, Y. Shao, L. G. Zawacki, J. Duo, B. F. McGuinness, C. D. Carroll, D. W. Hobbs, N.-Y. Shih, S. B. Rosenblum, and J. A. Kozlowski, "Discovery of CXCR3 antagonists substituted with heterocycles as amide surrogates: Improved PK, hERG and metabolic profiles, Bioorg. Med. Chem. Lett., Vol. 24, pp. 1085-1088, 2014. https://doi.org/10.1016/j.bmcl.2014.01.009
  3. J. Liu, Z. Fu, A.-R. Li, M. Johnson, L. Zhu, A. Marcus, J. Danao, T. Sullivan, G. Tonn, T. Collins, and J. Medina, Optimization of a series of quinazolinone-derived antagonists of CXCR3, Bioorg. Med. Chem. Lett., Vol. 19, pp. 5114-5118, 2009. https://doi.org/10.1016/j.bmcl.2009.07.032
  4. Y. Shao, G. N. Anilkumar, C. D. Carroll, G. Dong, J. W. Hall III, D. W. Hobbs, Y. Jiang, C.-H. Jenh, S. H. Kim, J. A. Kozlowski, B. F. McGuinness, S. B. Rosenblum, I. Schulman, N.-Y. Shih, Y. Shu, M. K. C. Wong, W. Yu, L. G. Zawacki, and Q. Zeng, II. SAR studies of pyridyl-piperazinyl-piperidine derivatives as CXCR3 chemokine antagonists, Bioorg. Med. Chem. Lett., Vol. 21, pp. 1527-1531, 2011. https://doi.org/10.1016/j.bmcl.2010.12.114
  5. A. G. Cole, I. L. Stroke, M.-R. Brescia, S. Simhadri, J. J. Zhang, Z. Hussain, M. Snider, C. Haskell, S. Ribeiro, K. C. Appell, I. Henderson, and M. L. Webb, Identification and initial evaluation of 4-Naryl-[1, 4] diazepane ureas as potent CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 16, pp. 200-203, 2006. https://doi.org/10.1016/j.bmcl.2005.09.020
  6. X. Chen, J. Mihalic, J. Deignan, D. J. Gustin, J. Duquette, X. Du, J. Chan, Z. Fu, M. Johnson, A.-R. Li, K. Henne, T. Sullivan, B. Lemon, J. Ma, S. Miao, G. Tonn, T. Collins, and J. C. Medina, Discovery of potent and specific CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 22, pp. 357-362, 2012. https://doi.org/10.1016/j.bmcl.2011.10.120
  7. G. Thoma, R. Baenteli, I. Lewis, T. Wagner, L. Oberer, W. Blum, F. Glickman, M. B. Streiff, and H.-G. Zerwes, Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: Discovery, characterization and preliminary SAR of a promising lead, Bioorg. Med. Chem. Lett., Vol. 19, pp.6185-6188, 2009. https://doi.org/10.1016/j.bmcl.2009.09.002
  8. X. Du, X. Chen, J. T. Mihalic, J. Deignan, J. Duquette, A.-R. Li, B. Lemon, J. Ma, S. Miao, K. Ebsworth, T. J. Sullivan, G. Tonn, T. L. Collins, and J. C. Medina, "Design and optimization of imidazole derivatives as potent CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 18, pp. 608-613, 2008. https://doi.org/10.1016/j.bmcl.2007.11.072
  9. G. Thoma, R. Baenteli, I. Lewis, D. Jones, J. Kovarik, M. B. Streiff, and H.-G. Zerwes, Special ergolines efficiently inhibit the chemokine receptor CXCR3 in blood, Bioorg. Med. Chem. Lett., Vol. 21, pp.4745-4749, 2011. https://doi.org/10.1016/j.bmcl.2011.06.070
  10. S. Storelli, P. Verdijk, D. Verzijl, H. Timmerman, A. C. van de Stolpe, C. P. Tensen, M. J. Smit, I. J. P. De Esch, and R. Leurs, Synthesis and structure-activity relationship of 3-phenyl-3H-quinazolin-4-one derivatives as CXCR3 chemokine receptor antagonists, Bioorg. Med. Chem. Lett., Vol. 15, pp. 2910-2913, 2005. https://doi.org/10.1016/j.bmcl.2005.03.070
  11. G. Thoma, , R. Baenteli, I. Lewis, T. Wagner, L. Oberer, W. Blum, F. Glickman, M. B. Streiff, and H.-G. Zerwes, Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: Discovery, characterization and preliminary SAR of a promising lead, Bioorg. Med. Chem. Lett., Vol. 19, pp. 6185-6188, 2009. https://doi.org/10.1016/j.bmcl.2009.09.002
  12. B. Homey, Chemokines and chemokine receptors as targets in the therapy of psoriasis, Curr. Drug Targets-Inflammation & Allergy, Vol. 3, pp. 169-174, 2004. https://doi.org/10.2174/1568010043343840
  13. X. Ma, K. Norsworthy, N. Kundu, W. H. Rodgers, P. A. Gimotty, O. Goloubeva, M. Lipsky, Y. Li, D. Holt, and A. Fulton, CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model, Mol. Cancer Ther., Vol. 8, pp. 490-498, 2009. https://doi.org/10.1158/1535-7163.MCT-08-0485
  14. S. H. Kim, G. N. Anilkumar, L. G. Zawacki, Q. Zenga, D.-Y. Yang, Y. Shao, G. Dong, X. Xu, W. Yu, Y. Jiang, C.-H. Jenh, J. W. Hall III, C. D. Carroll, D. W. Hobbs, J. J. Baldwin, B. F. McGuinness, S. B. Rosenblum, J. A. Kozlowski, B. B. Shankar, N.-Y. Shih, III. Identification of novel CXCR3 chemokine receptor antagonists with a pyrazinylpiperazinyl-piperidine scaffold, Bioorg. Med. Chem. Lett., Vol. 21, pp. 6982-6986, 2011. https://doi.org/10.1016/j.bmcl.2011.09.120
  15. S. Bastani, W. Sherman, G. T. Schnickel, G. R. Hsieh, George, R. Bhatia, M. C. Fishbein, A. Ardehali, "Chemokine receptor blockade with a synthetic non-peptide compound attenuates cardiac allograft vasculopathy, Transplantation, Vol. 88, pp. 995-1001, 2009. https://doi.org/10.1097/TP.0b013e3181b9ccd5
  16. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool, J. Mol. Biol., Vol. 215, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
  17. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank, Nucleic Acids Res., Vol. 28, pp. 235-242, 2000. https://doi.org/10.1093/nar/28.1.235
  18. J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., Vol. 22, pp. 4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673
  19. B. K. Kuntal, P. Aparoy, and P. Reddanna, "Easy modeller: A graphical interface to modeller, BMC Research Notes, Vol. 3, pp. 226, 2010.
  20. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, and A. Sali, "Comparative protein structure modelling with Modeller, Current Protocols in Bioinformatics, Vol. 5, pp. 1-5, 2006.
  21. A. Bagaria, V. Jaravine, Y. J. Huang, G. T. Montelione, and P. Guntert, "Protein structure validation by generalized linear model root-meansquare deviation prediction, Protein Sci., Vol. 21, pp. 229-238, 2012. https://doi.org/10.1002/pro.2007
  22. S. A. Hollingsworth and P. A. Karplus, A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins, Biomolecular Concepts, Vol. 1, pp. 3-4, 2010.
  23. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions, Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916