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ABSTRACT. In this paper, a generalized guidance law with an arbitrary pair of guidance coef-

ficients for impact angle control is proposed. Under the assumptions of a stationary target and

a lag-free missile with constant speed, necessary conditions for the guidance coefficients to sat-

isfy the required terminal constraints are obtained by deriving an explicit closed-form solution.

Moreover, optimality of the generalized impact-angle control guidance law is discussed. By

solving an inverse optimal control problem for the guidance law, it is found that the generalized

guidance law can minimize a certain quadratic performance index. Finally, analytic solutions

of the generalized guidance law for a first-order lag system are investigated. By solving a

third-order linear time-varying ordinary differential equation, the blowing-up phenomenon of

the guidance loop as the missile approaches the target is mathematically proved. Moreover,

it is found that terminal misses due to the system lag are expressed in terms of the guidance

coefficients, homing geometry, and the ratio of time-to-go to system time constant.

1. INTRODUCTION

Some guided weapons have additional requirements to achieve a proper flight path angle

at impact for enhanced warhead effect, better target information, and so on. For this reason,

impact angle control guidance laws have been widely studied. Most of these studies, optimal

guidance laws for various performance indices are suggested by solving the linear quadratic

optimal control problem based on linearized models of pursuit kinematics. The energy-optimal

guidance law with the impact angle constraint for lag-free system [1], which is identical to the

optimal solution of the simple rendezvous problem solved by Bryson and Ho [3], is represen-

tative. Ryoo et al. proposed a time-to-go weighted optimal guidance law that was obtained by

the solution of a linear quadratic optimal control problem with the energy cost weighted by a

power of the time-to-go [6]. Most of these methods need time-to-go estimations for implemen-

tation of the guidance laws. On the other hand, there are some different approaches concerned

with additional bias terms of the conventional proportional navigation guidance (PNG) to con-

trol the impact angle. Kim et al. [8] have considered a time-varying bias which is intuitively

chosen as a combination of the state variables such as the line-of-sight angle (LOS), the relative

range, and the flight path angle.
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According to the previous works, lots of impact-angle control guidance laws have two time-

varying feedback terms in common: one is a position error term and the other is a velocity error

term. Especially, the energy optimal impact-angle-control guidance law for lag-free system

has two time-varying feedback terms with fixed guidance coefficients. Here, a question arises:

what would happen if a guidance law for an arbitrary pair of guidance coefficients rather than

the fixed values is adopted. In order to clarify it, the generalized guidance law is introduced by

replacing the fixed guidance coefficients of the optimal guidance laws with an arbitrary pair of

guidance coefficients.

Every pair of the guidance coefficients, however, cannot guarantee that the missile achieves

guidance goals. For example, if the two guidance coefficients are the same, the guidance law

may become conventional PNG which cannot satisfy the impact angle constraint. In order to

find all feasible guidance coefficients for impact angle control, necessary conditions for the

guidance coefficients to satisfy the required impact angle as well as zero miss distance are

studied by obtaining explicit closed-form solutions for lag-free system. In the guidance law,

furthermore, time-to-go appears explicitly but it cannot be directly measured from any device.

Hence, a suitable time-to-go estimation method is required to implement the guidance law. In

this paper, a practical and precise time-to-go estimation method for the generalized guidance

law is discussed by considering the curved trajectory depending on the guidance coefficients.

Optimality of the generalized guidance law is another main concern of this paper. It is found

that the guidance law with an arbitrary pair of guidance coefficients can minimize a certain

quadratic performance index subject to the terminal constraints by solving an inverse optimal

control problem whose purpose is to find the performance index for which the given guidance

law is optimal. The solution of the inverse optimal problem furnishes us with the relationship

between the guidance coefficients and the corresponding quadratic performance index which

provides physical insights into the maneuvering characteristics of the missile. Above all, it

serves as a theoretical foundation to choose the adequate values of the guidance coefficients

to improve robustness to external disturbances and uncertainties of the missile system. In

addition, it will provide a chance for the missile to fulfill additional requirements such as small

angle-of-attack at impact for warhead effect, flight time constraint for salvo-attack, look angle

limitation for strap-down seeker, and so on.

Finally, performance degradation of the generalized guidance law due to the system lag is

investigated by obtaining analytic solutions for a first-order lag system. While the generalized

guidance law with feasible guidance coefficients for a lag-free system satisfies the terminal

constraints, it can hardly be expected to provide the perfect performance in practice because

there are a lot of error sources in realistic environment. In order to investigate the performance

degradation due to system lag which is one of the critical error sources, explicit closed-form

solutions for the first-order lag system are obtained. If system lag is considered, however,

it is hard to derive analytic solutions because the governing equation becomes a high-order

non-equidimensional linear time-varying differential equation. Under the assumption that the

missile is given by a first-order lag system, analytic solutions are derived for the generalized

guidance law with an arbitrary pair of guidance coefficients. The analytic solutions provide an

insight into the behavior of the missile near to target: the guidance command, the acceleration
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of the missile, and the velocity component perpendicular to the collision course tend to diverge

as the missile approaches the target. Terminal misses due to the system lag are discussed

by using the analytic solutions, and effects of guidance coefficients on the terminal misses

are examined. In addition, homing geometries which are advantageous in terms of the terminal

misses are proposed. It is important that the analytic solutions explain blowing-up phenomenon

of the homing loop mathematically and provide useful clues in designing an impact-angle-

control guidance law.

2. GENERALIZED IMPACT-ANGLE-CONTROL GUIDANCE LAW

In this chapter, a generalized guidance law for impact angle control is introduced. The guid-

ance law is initially assumed as a similar form with arbitrary guidance coefficients to other

impact-angle-control guidance laws. By obtaining closed-form solutions of the guidance law

for a lag-free system, feasible sets of the guidance coefficients to satisfy the impact angle con-

straint as well as zero miss distance are demonstrated. In order to implement the guidance law,

a time-to-go calculation method which considers the curved-path depending on the guidance

coefficients is proposed.

2.1. Previous Works on Impact Angle Control. Consider the homing guidance geometry

for a stationary or a slowly moving target as shown in Fig. 1.

FIGURE 1. Homing guidance geometry.

Here, VM and aM denote the missile velocity and the acceleration applied normal to the

velocity vector, respectively. Moreover, Y , γM , and γ
f

denote the cross range, flight path angle,

and impact angle with respect to the initial LOS, respectively. For the purpose of simplification,

a new cross range and flight path angle γ with respect to the predetermined collision course are

introduced. The remaining variables in Fig. 1 are self-explanatory.

The equations of motion for this homing problem are given by

ẏ = VM sin γ, y(t0) = y0,
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VM γ̇ = aM , γ(t0) = γ0 (2.1)

If the autopilot dynamics of the system is neglected, then the control input equals to the ac-

celeration; i.e., u(t) = aM (t). Under the assumption that VM is constant and γ is small, the

following linear differential equation can be obtained:

ẋ = Ax+Bu, x(t0) = x0 (2.2)

where

x =

[
y
v

]
, x0 =

[
y0
v0

]
, A =

[
0 1
0 0

]
, B =

[
0
1

]
, (2.3)

and the velocity component perpendicular to the predetermined collision course is defined by

v(t) = VMγ(t). (2.4)

Note that the velocity component at impact is directly proportional to the impact angle error.

2.1.1. Energy Optimal Guidance Law (EOGL)[1]. Consider the following optimal problem:

Find u(t) that minimizes J defined by

J =
1

2

∫ tf

t0

u2dτ (2.5)

subject to (2.2), (2.3), and terminal constraints given by x(tf ) = 0. The optimal guidance

command can be obtained using Pontryagin’s minimum principle:

u(t) = −
[

6

(tf − t)2
x1(t) +

4

(tf − t)
x2(t)

]
. (2.6)

This is one of the most widely used impact-angle-control guidance law for stationary or slowly

moving target because it is not only optimal but easy to analyze the performance of the guidance

loop.

2.1.2. Optimal Guidance with Time-to-go Weighted Cost (TOGL) [6]. Consider following op-

timal problem with the time-to-go weightings in the cost defined by

J =
1

2

∫ tf

t0

(tf − t)pu2dτ, ρ ≤ 0, (2.7)

subject to (2.2), (2.3), and terminal constraints given by x(tf ) = 0. The optimal guidance

command can be obtained as

u(t) = 0

[
(2− ρ)(3− ρ)

(tf − t)2
xt(t) +

2(2− ρ)

tf − t
xt(t)

]
. (2.8)

When ρ = 0, it is easily seen that TOGL is identical to EOGL. When ρ < 0, on the other hand,

the time-to-go weighted cost becomes increasingly expensive as t → tf so that the guidance

command eventually becomes zero at impact. This property is important for ensuring some op-

erational margin for guidance command to handle external disturbances, model uncertainties,

and command saturation. Moreover, it may enhance the warhead effect of the missile because

the zero control command at impact provides a very small angle-of-attack.
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2.1.3. Time-Varying Biased PNG (TBPNG) [8]. The biased PNG described in [8] is mainly

concerned with an additional time-varying bias term of conventional PNG required to control

the impact angle, which can be expressed as

u(t) = NVM {σ̇(t)− σ̇b(t)}, (2.9)

whereN is a navigation constant, σ̇(t) is the LOS rate, and σ̇b(t) denotes the time-varying bias

term to control the impact angle defined by

σ̇b(t) =
ηVM {γ

f
− σ(t)

NR(t) cos(γM (t)− σ(t))
. (2.10)

Here, η is an arbitrary positive constant. Under the assumptions of stationary target and small

flight path angle, (2.9) is rewritten by simple manipulations as

u(t) = −
[
N + η

(tf − t)2
x1(t) +

N

(tf − t)
xt(t)

]
. (2.11)

2.2. Generalized Impact-Angle-Control Guidance Law [20]. According to the overview

of previous works, it is seen that lots of impact-angle control laws have two time-varying

feedback loops in common. Based on this observation, a generalized form of impact-angle-

control guidance law is introduced as

u(t) = −
[

k1
(tf − t)2

x1(t) +
k2

(tf − t)
x2(t)

]
(2.12)

where both of the guidance coefficients, k1 and k2, are positive constants. Here, a question now

arises: Is it possible that the control law with arbitrary k1 and k2 fulfill the guidance goals?

Consider obtaining explicit closed-form solutions to find feasible pairs of the guidance co-

efficients that produce zero miss distances and zero impact angle errors. When the guidance

law (2.12) is applied to (2.2), the system equation can be expressed by

ÿ +
k2

(tf − t)
ẏ +

k1
(tf − t)2

y = 0. (2.13)

This is the second-order Cauchy equation. The characteristic equation is obtained by letting

y = (tf − t)λ as

λ2 − (k2 + 1)λ+ k1 = 0, (2.14)

and the roots of (2.14) are

λ1, λ2 =
k2 + 1

2
±
√(

k2 + 1

2

)2

− k1. (2.15)

From (2.15), another relational expression between the roots and guidance coefficients are

derived as

k1 = λ1λ2 and k2 = λ1 + λ2 − 1. (2.16)
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Since k1 and k2 are real, the characteristic equation may have three different kinds of roots:

two distinct real roots, a real double root, or two complex conjugate roots. These cases are

classified using the discriminant of (2.14) as

d =

(
k2 + 1

2

)2

− k1. (2.17)

For convenience, the guidance coefficient vector denoted by z =
[
k1 k2

]
in Z = {z ∈

R
2|k1 > 0 and k2 > 0} is defined. The set Z is divided into three clear subsets: Z = {z ∈

R
2|d > 0}, Z = {z ∈ R

2|d = 0}, and Z = {z ∈ R
2|d < 0} according to the discriminant.

Now, the closed-form solutions are found case-by-case according to which subset contains the

guidance coefficient vector.

2.2.1. In Case of z ∈ Z1. In this case, λ1 and λ2 given by (2.15) are distinct real. By consid-

ering the initial conditions y(0) = y0 and v(0) = v0, the closed-form solutions are

y(t) = c11(tf − t)λ1 + c12(tf − t)λ2 , (2.18)

v(t) = −c11λ1(tf − t)λ1−1 − c12λ2(tf − t)λ2−1, (2.19)

u(t) = c11λ1(λ1 − 1)(tf − t)λ1−2 + c12λ2(λ2 − 1)(tf − t)λ2−2, (2.20)

where c11 = −(λ2y0+tfv0)/[(λ1−λ2)tλ1
f ] and c12 = (λ1y0+tfv0)/[(λ1−λ2)tλ2

f ]. Note that

the closed-loop solutions consist of two distinct time-to-go polynomial terms which are highly

dependent on the roots of the characteristic equation determined by the guidance coefficients.

Next, the solutions are arranged in terms of the initial states to find the necessary conditions

that satisfy the terminal constraints regardless of the initial conditions. It is expressed in terms

of y0 and v0 by (2.18) and (2.19) as

y(τ) =
τλ2

λ1 − λ2

[
(λ1 − λ2τ

λ1−λ2)y0 + tf (1− τλ1−λ2)v0

]
, (2.21)

v(τ) =
τλ2−1

(λ1 − λ2)tf

[
λ1λ2(τ

λ1−λ2 − 1)y0 + tf (λ1τ
λ1−λ2 − λ2)v0

]
, (2.22)

u(τ) =
τλ2−2

(λ1 − λ2)t2f

[
λ1λ2{(λ2 − 1)− (λ1 − 1)τλ1−λ2}y0

+tf{λ2(λ2 − 1)− λ1(λ1 − 1)τλ1−λ2}v0
]
, (2.23)

where τ = 1− t/tf .

Since λ1 > λ2, from (2.21) and (2.22), λ2 ≥ 1 is required for a zero miss distance with a

finite velocity regardless of the initial conditions; i.e.,

k2 − 1

2
≥
√(

k2 + 1

2

)2

− k1. (2.24)
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Furthermore, the positive discriminant yields

k1 <

(
k2 + 1

2

)2

. (2.25)

From (2.24), it can be intuitively seen that k2 > 1. According to (2.23), the guidance coefficient

vector that satisfies the above conditions cannot guarantee the finite control input as τ →
0 when 1 < λ2 < 2. In this case, the acceptable performance cannot be expected in real

situations where many nonlinearities and uncertainties are included. Thus, the condition of

finite control inputs should be also considered. For λ2 ≥ 2, it is easy to see that u(τ) remains

finite for all τ . Additionally, it is seen that u(τ) can remain finite when λ2 = 1. By substituting

λ2 = 1, (2.23) is represented as

u(τ)|λ2=1 = −λ1τ
λ1−2

t2f
(y0 + tfv0). (2.26)

Since λ2 = 1, it is easy to see that λ1 = k1 = k2 from(2.15). This is the well known PNG

whose navigation constant is λ1; for u(τ) to remain finite at τ = 0, k2 ≥ 2 is required, as is

evident in (2.26).

Now, return to the impact angle control. In order to control the impact angle, the velocity

component v that is perpendicular to the predetermined collision course should approach zero

as τ → 0. From the solutions of (2.21) and (2.22), it is seen that the impact angle error is zero,

as well as the zero miss distance being zero, for λ2 > 1; for u(τ) to remain finite, λ2 ≥ 2 is

required; i.e.,

k2 − 3

2
≥
√(

k2 + 1

2

)2

− k1. (2.27)

Then, a feasible set of guidance coefficient vectors can be obtained from (2.25) and (2.27) as

F1 = {z ∈ Z
∣∣2(k2 − 1) ≤ k1 <

(
k2 + 1

2

)2

and k2 > 3}. (2.28)

The guidance coefficient vector z =
[
6 4

]
, which is that of the energy optimal guidance

law for impact angle control, is an element of the set F1. In this case, the roots of the charac-

teristic equation are λ1 = 3 and λ2 = 2. From (2.18), it is easy to see that the profile of y(t) is

the third-order polynomial of t.
It is interesting to note here that zero control input at impact can be achieved by choosing

guidance coefficients which satisfy the condition of λ2 > 2; i.e., k1 > 2(k2 − 1). In general,

the energy optimal guidance law for impact angle control converges to a nonzero value as

the missile approaches the target so that sometimes the maneuver acceleration can be easily

saturated in real situations. The saturation of the maneuvering acceleration in the terminal

phase may cause large terminal errors. From this point of view, it is useful if magnitude of the

terminal acceleration command is reduced by tuning the guidance coefficients k1 and k2 so that

λ2 > 2.
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2.2.2. In Case of z ∈ Z2. In this case, the double root of the characteristic equation becomes

λd =
k2 + 1

2
(2.29)

The closed-form solutions are then

y(t) = (tf − t)λd [c21 + c22 ln(tf − t)], (2.30)

v(t) = −(tf − t)λd−1[c21λd + c22{1 + λd ln(tf − t)}], (2.31)

u(t) = (tf − t)λd−2[c21λd(λd − 1) + c22{(2λd − 1) + λd(λd − 1) ln(tf − t)}], (2.32)

where, c21 = [{1 + λd ln(tf )}y0 + tf ln(tf )v0]/t
λd
f and c22 = −(λdy0 + tfv0)/t

λd
f . It is

seen that the profiles of the closed-form solutions are the combinations of the polynomial and

logarithmic functions of t.
The closed-form solutions are then arranged in terms of the initial states to find the neces-

sary conditions that satisfy the terminal constraints regardless of the initial conditions. This is

expressed in terms of y0 and v0 by (2.30) to (2.32) as

y(τ) = τλd [(1− λd ln τ)y0 − tf ln τv0], (2.33)

v(τ) =
τλd−1

tf
[λd

2 ln τy0 + tf (1 + λd ln τ)v0], (2.34)

u(τ) = −τ
λd−2

t2f
[λd

2{1 + (λd − 1) ln τ}y0 + tf{(2λd − 1) + λd(λd − 1) ln τ}v0]. (2.35)

From the solutions for y(τ), v(τ), and u(τ) of (2.33), (2.34), and (2.35), respectively, it

is seen that λd > 2 is required for u(τ → 0) to remain finite, as well as for the two terminal

constraints, y(τ → 0) = 0 and v(τ → 0) = 0, to be satisfied regardless of the initial conditions

of y0 and v0. From the condition of λd > 2 as well as d = 0, a new feasible set of guidance

coefficients can be obtained:

F2 = {z ∈ Z
∣∣k1 =

(
k2 + 1

2

)2

and k2 > 3}. (2.36)

From (2.35), it is seen that λd > 2 causes the control input at impact to be zero since

limτ→0 τ
p ln τ for positive p. Thus, all pairs of guidance coefficients in F2 have the acceleration

commands converge to zero.

2.2.3. In Case of z ∈ Z3. In this case, two complex conjugate roots of the characteristic

equation become

λ1, λ2 = α± iβ, (2.37)

where α = (k2 + 1)/2, β =
√
k1 − α2 and i =

√−1. Hence, the closed-form solutions are

y(t) = (tf − t)α[c31 cos(β ln(tf − t)) + c32 sin(β ln(tf − t))], (2.38)

v(t) = −(tf − t)α−1[(c31α+ c32β) cos(β ln(tf − t)) + (c32α+ c31β) sin(β ln(tf − t))],
(2.39)
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u(t) = (tf − t)α−2

[ {c31(α2 − α− β2) + c32β(2α− 1)} cos(β ln(tf − t))
+{c32(α2 − α− β2)− c31β(2α− 1)} sin(β ln(tf − t))

]
, (2.40)

where

c31 =
[α sin(β ln tf ) + β cos(β ln tf )]y0 + tf sin(β ln tf )v0

βtαf
,

c32 =
[α cos(β ln tf )− β sin(β ln tf )]y0 + tf cos(β ln tf )v0

βtαf
.

From (2.38) to (2.40), it is seen that the profiles of the closed-form solutions are combinations

of the polynomial, logarithmic, and trigonometric functions. This means that the trajectory of

the missile provides an oscillatory motion.

The closed-form solutions are represented in terms of the initial states to find the necessary

conditions that satisfy the terminal constraints regardless of the initial conditions. From (2.38)

to(2.40), the followings are obtained:

y(τ) = −τ
α

β
[{α sin(β ln τ)− β cos(β ln τ)}y0 + tf sin(β ln τ)v0], (2.41)

v(τ) =
τα−1

βtf
[{(α2 + β2) sin(β ln τ)y0 + tf{α sin(β ln τ) + β cos(β ln τ)}v0], (2.42)

u(τ) = −τ
α−2

βt2f

[
(α2 + β2){(α− 1) sin(β ln τ) + β cos(β ln τ)}y0

+tf{(α2 − α− β2) sin(β ln τ) + β(2α− 1) cos(β ln τ)}v0
]
. (2.43)

From (2.41) to (2.43), it is seen that α ≥ 2 is required for u(τ → 0) to remain finite, as well

as for the two terminal constraints to be satisfied regardless of the initial conditions. From the

condition of α ≥ 2 as well as d < 0, another feasible set can be defined:

F3 = {z ∈ Z
∣∣k1 >

(
k2 + 1

2

)2

and k2 ≥ 3}. (2.44)

From (2.43), we see that zero control input at impact can be achieved by choosing guidance

coefficients which satisfy the condition of α > 2, i.e., k2 > 3. In this case, while the magnitude

of the control input tends to decrease, its oscillating frequency gradually increase as the missile

approaches the target.

2.3. Feasible Sets of Guidance Coefficients. As previously discussed, there are three kinds

of feasible guidance coefficient sets according to the classes of the solutions: One is F1 where

the guidance coefficients lead to the time-to-go polynomial form trajectories as

F1 = {z ∈ Z
∣∣2(k1 − 1) ≤ k1 <

(
k2 + 1

2

)2

and k2 > 3}, (2.45)
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another is F2 where the guidance coefficients provide the trajectory profiles combined with

polynomial and logarithmic functions as

F2 = {z ∈ Z
∣∣k1 =

(
k2 + 1

2

)2

and k2 > 3}, (2.46)

and the other is where the guidance coefficients provide the oscillatory motion as

F3 = {z ∈ Z
∣∣k1 >

(
k2 + 1

2

)2

and k2 > 3}, (2.47)

Consider the coefficients of the impact-angle-control guidance laws summarized in section

2.1. Let SEOGL and STOGL be the guidance coefficient sets of EOGL and TOGL, respectively.

Then, we see that SEOGL ⊂ STOGL ⊂ F1 since

SEOGL = {[6, 4]}, (2.48)

STOGL = {z ∈ Z
∣∣k1 =

(
k2 + 1

2

)2

− 1

4
and k2 > 4}, (2.49)

Figure 2 illustrates the three feasible sets of guidance coefficient vectors for impact angle

control with finite control inputs. It is shown that an entire feasible set of the guidance co-

efficient vectors is the union of F1, F2, and F3. In Fig. 2, it is seen that F3 may provide a

wider choice of the guidance coefficients than others. In addition, zero control input at impact

can be achieved by choosing an interior point of F since the boundary of the feasible area is

determined by the condition of finite control input. It is also seen that STOGL is a subset of

F1 but very close to F2. This implies that the missile’s behavior when TOGL is employed is

similar to that for z ∈ F2.

FIGURE 2. Feasible sets of guidance coefficients.
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2.4. Time-to-go Calculation. The generalized form of impact-angle-control guidance law

proposed in this section becomes

u(t) = −
[

k1
(tf − t)2

x1(t) +
k2

(tf − t)
x2(t)

]
(2.50)

where the guidance coefficients, k1 and k2, are arbitrary but contained in the feasible set F .

For implementing the guidance law, the missile only requires a built-in navigation system.

If an additional seeker is provided to measure the missile-to-target LOS angle σ(t), we can use

σ(t) instead of x1(t). In this case, x1(t) can be approximated by VM (tf − t)(γf
−σ) and x2(t)

becomes VM (γM − γ
f
). Hence, (2.50) is rewritten as

u(t) = − VM

(tf − t)
[−k1σ(t) + k2γM (t) + (k1 − k2)γf

]. (2.51)

If the seeker is provided to measure the LOS rate σ̇(t) as well, since σ̇(t) can be approximated

by − 1

VM

[
x1(t)

(tf − t)2
+

x2(t)

(tf − t)

]
, (2.50) is rewritten as

u(t) = k2VM σ̇(t) +
(k1 − k2)VM

(tf − t)
[σ(t)− γ

f
]. (2.52)

Here, tf − t, named time-to-go, appears explicitly in all implementation methods, but it may

not be directly measured by the sensors. Hence, to implement the guidance laws, a suitable

time-to-go estimation is required.

The most widely used time-to-go estimation method is the range over closing velocity, i.e.,

R/V . This method provides good estimates of time-to-go when the trajectory is near the

collision course. For the impact angle control laws, however, this method is not adequate

because the trajectory may be curved and distant from the collision course.

Here, a time-to-go estimation method that considers the curved trajectory generated by the

generalized guidance law with an arbitrary z in F is proposed. From the previous section, the

closed-form solutions can be represented in terms of time t. Under the small angle assumption,

solutions can be approximated to functions of range x by substituting t ≈ x/V . The flight

path angle γM with respect to the initial LOS can be represented as functions of range x. Since

v = VM (γM − γ
f
), y0 = Rγ

f
, and tf ≈ R/VM , the flight path angle is represented by

γM (ξ)− γ
f
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
ξ(α−1)

[
Φ0

(
ξ
√
d + ξ−

√
d
)
+

Ψ0√
d

(
ξ
√
d − ξ−

√
d
)]

, if d > 0

ξ(α−1)(Φ0 +Ψ0 ln ξ) , if d = 0

ξ(α−1)

[
Φ0 cos

(√−d ln ξ)+ Ψ0√−d sin
(√−d ln ξ)] , if d < 0

(2.53)

where ξ = 1− x

R
, α =

k2 + 1

2
, Φ0 = γ0 − γ

f
, and Ψ0 = αγ0 − (α− k1)γf

.
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Since the velocity VM is constant, the final time tf can be calculated by the total length of

the curved path S over the velocity VM as

tf =
S

VM

=
R

VM

∫ t

0

√
1 + y′2dξ. (2.54)

Since√
1 + y′2 =

√
1 + tan2 γM = sec γM = 1 +

γM
2

2!
+

5γM
4

4!
+

61γM
6

6!
+ · · · , ∣∣γM

∣∣ < π

2
,

tf can be represented as

tf =
R

VM

(1 + h), (2.55)

where the length increment factor due to the path curvature, h, is

h =
1

2

∫ 1

0
γM

2dξ +
5

24

∫ 1

0
γM

4dξ +
61

720

∫ 1

0
γM

6dξ + · · · .

For simplification, assuming that γM is sufficiently small for the high order terms of γM to be

near zero, h can be calculated approximately; that is,

h ≈ 1

2

∫ 1

0
γM

2dξ (2.56)

Even if considering the higher order terms in the Taylor series produces more accurate results,

they are too complicated to implement in real situations.

Now,
∫ 1
0 γM

2dξ can be calculated for three cases; d > 0, d = 0 and d < 0. By manipu-

lating three integration results for (2.53), it can be expressed as one equation regardless of the

discriminant d:∫ 1

0
γM

2dξ =
(2k1 − k2)γ

2
0
− 2(k1 − k2)γ0γf

+ 2(k1 − k2)
2γ

f
2

k2(4k1 − 2k2 − 1)
. (2.57)

For any z in F , numerical singularity is not a relevant issue because k2 ≥ 2(k2−1) and k2 ≥ 3.

The final time given by (2.55) is replaced by the time-to-go with regard to the present LOS

with an angle of σ as the initial LOS; let γ̄M = γM − σ and γ̄f = γ
f
− σ, then the time-to-go

is represented by

tgo =
R

VM

(
1 +

ε

2

)
, (2.58)

where

ε =
(2k1 − k2)γ̄

2
M − 2(k1 − k2)γ̄M γ̄f + 2(k1 − k2)

2γ̄2f
k2(4k1 − 2k2 − 1)

. (2.59)
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2.5. Numerical Simulations. In this section, the performance of the impact angle control

laws with various guidance coefficients is studied through nonlinear simulations. In the simu-

lations, it is assumed that the target is stationary and the speed of the missile is constant. It is

also assumed that the missile is a lag-free system without control input limits and has perfect

measurements.

TABLE 1. Initial conditions for nonlinear simulations.

Parameters Values

Missile position (x0, y0) (0m, 0m)

Target position (xtyt) (5000m, 0m)

Missile velocity VM 300m/s

Launch angle γ0 10◦
Impact angle γ

f
−20◦

The simulations are conducted for five guidance coefficient vectors denoted by z1 · · · z5
which are shown in Figure 3.

FIGURE 3. Guidance coefficient vectors for simulations.

The missile trajectories, flight path angles, control inputs and time-to-go estimation errors

are shown in Fig. 4 through Fig. 7. As shown in Fig. 4 and Fig. 5, all cases do not produce

terminal errors. It is also observed that the trajectory for z3 , which has the highest k1 with

k2 = 4, shows the most oscillatory behavior and the trajectory for z4 contained in shows a

rapid approach to the collision course without oscillation.
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FIGURE 4. Trajectories

(γ0 = 10◦, γ
f
= −20◦).

FIGURE 5. Flight path

angles (γ0 = 10◦, γ
f

=
−20◦).

As shown in Fig. 6, the case of high k1 and low k2 leads to a very large control input with

fast oscillating behavior, but high k2 reduces the required control input as well as the oscillatory

behavior as a damping ratio increases.

FIGURE 6. Control inputs (γ0 = 10◦, γ
f
= −20◦).

As shown in Fig. 7, the guidance law with z3 produces the largest time-to-go estimation

error due to the nonlinearity effect enhanced by the oscillatory motion.

From these simulation results, it is found that various guidance coefficient vectors ensure

zero impact angle errors as well as zero miss distances. However, the guidance law with high

guidance coefficients may produce a significantly worse performance when error sources such

as system lag or command saturation are considered. Therefore, a special concern is required

in choosing adequate guidance coefficients when implementing the guidance law in practice.
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FIGURE 7. Time-to-go calculation errors (γ0 = 10◦, γ
f
= −20◦).

2.6. Closing Remarks. In this chapter, a generalized impact-angle control guidance law with

arbitrary guidance coefficients is proposed. All feasible sets of the guidance coefficients that

satisfy the terminal constraints are investigated. In order to find the feasible sets, explicit

closed-form solutions for lag-free system are derived. The closed-form solutions have three

classes of trajectories depending on the guidance coefficients: one is the time-to-go polyno-

mial trajectory, another is the trajectory combined with time-to-go polynomial and logarithmic

functions, and the third is the oscillatory trajectory combined with time-to-go polynomial, log-

arithmic, and harmonic functions. Moreover, based on the closed-form solutions, practical and

precise time-to-go calculation methods that can be widely used to implement the generalized

guidance law are established.

3. OPTIMALITY OF GENERALIZED GUIDANCE LAW [20]

In this chapter, optimality of the generalized impact-angle-control guidance law is discussed.

Under the assumptions of a stationary target and a lag-free missile with constant speed and

small flight path angle, optimality of the guidance law with arbitrary guidance coefficients is

demonstrated by using the inverse optimal control theory. This result may be a theoretical

foundation to choose the adequate values of the guidance coefficients to improve robustness to

external disturbances or uncertainties of the missile system.

3.1. Inverse Problem of Linear Optimal Control. The inverse problem of linear optimal

control is to find necessary and sufficient conditions for a given class of linear feedback system

to determine all members of this class of indices. The time-invariant case of the inverse problem

was solved for scalar control by Kalman [9], and the results were generalized to the multi-input

and time-varying case by Jameson and Kreindler [12]. In this section, the main results of [12]

are summarized to be applied to the guidance problem.

Consider a linear system given by

ẋ = Ax+Bu, x(t0) = x0, (3.1)
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u = Kx, (3.2)

and a performance index given by

J =
1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

t0

(xTQx+ uTRu)dt, (3.3)

where x ∈ Rn, u ∈ Rm, and tf is a fixed terminal time. The matrices A, B, K, Q, and R
may be time-varying, and are assumed to be uniformly bounded and continuous on [t0, tf ].

The inverse problem of the linear optimal control is to find necessary and sufficient condi-

tions on the system matrices A, B, and K so that some performance index of the type (3.1) is

minimized, and to determine all such Q, R, and E.

The direct problem and its solution are well known. The optimal feedback gain K is given

by

K = −R−1BTP, (3.4)

where symmetric matrix P is the solution of the Riccati equation:

−Ṗ = PA+ATP−PBR−1BTP+Q, P(tf ) = F. (3.5)

For the existence of a unique solution, it is assumed that R is positive definite(denoted by

R > 0), and it is usually assumed that Q and F are nonnegative definite(Q ≥ 0, F ≥ 0)as a

sufficient condition for the existence of a solution P(t) of (3.5). The minimal value J∗ of J is

then nonnegative for all x0 and t0, and since

J∗ =
1

2
xT
0 P(t0)x0, (3.6)

and P is nonnegative definite.

Jameson and Kreindler [12] found out, however, that a nonnegative definite Q condition

might not be necessary under some conditions as follows.

Theorem 3.1. Consider a closed-loop linear system (3.1) and (3.2) satisfying that B and K
are differentiable on [t0, tf ] and are of constant rank. It is possible to construct a performance
index (3.3) with

F = FT , Q = QT , R = RT > 0,

that attains its absolute minimum J∗ over all square-integrable controls, for all x0 and t0 <
tf ≤ ∞, if and only if for all T , t0 ≤ t ≤ tf , the following conditions hold:

KB has m linearly independent real eigenvectors, (3.7)

and

rank BK = rank K. (3.8)
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The minimal value J∗ can be negative. An index (3.3) such that J∗ ≥ 0 for all x0 and t0 <
tf ≤ ∞ can be constructed if and only if, in addition to (3.7), for all t, t0 < tf ≤ ∞ :

all eigenvalues of KB are nonpositive, (3.9)

and (3.8) is strengthened to

rank KB = rank K. (3.10)

An index (3.3) such that J∗ > 0 for all x0 and t0 < tf ≤ ∞ can be constructed if and only if
in addition to (3.7) and (3.9), the rank condition (3.10) is strengthened to

rank KB = rank K = rank B. (3.11)

Let’s construct a performance index (3.3) when the above conditions hold. We first construct

R = RT > 0 so that RKB is symmetric. From (3.4), if P is symmetric, symmetric condition

of RKB holds. Since the eigenvectors of KB are real and linearly independent, the matrix V
whose columns are the eigenvectors of BTKT is real and nonsingular. Thus,

BTKTV = VΛ (3.12)

where is the diagonal matrix of eigenvalues of . Then we have following theorem.

Theorem 3.2. Let the eigenvector condition (3.7) hold. Then every given real R = RT > 0
such that RKB is symmetric is necessarily given by

R = VVT , (3.13)

where the columns of V are suitably chosen eigenvectors of BTKT .

We next solve (3.4) for a real symmetric P. From (3.4),

BTP = −RK. (3.14)

Let W be any real m× n matrix such that

BTWTRK = RK. (3.15)

By inspection of (3.15), −WTRK is a solution of (3.14) for P, which, however, is not neces-

sarily symmetric. To obtain a symmetric solution, set

P0 = −WTRK−KTRW +WTRKBW. (3.16)

By (3.15) and the symmetry of RKB,

BTP0 = −RK−BTKTRW +RKBW = −RK.

Further, if P is any real symmetric solution of(3.14), then

BT (P−P0) = 0,

whence the general solution of (3.4) for a real symmetric P is

P = −WTRK−KTRW +WTRKBW +Y, (3.17)
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where Y is any real matrix such that

BTY = 0, Y = YT . (3.18)

Under the rank condition (3.10) on KB, an additional representation of P is available as fol-

lows.

Theorem 3.3. Let R be a real, symmetric and positive definite matrix such that RKB is
symmetric. If

rank KB = rank K,

then all real symmetric P satisfying (3.14) are represented in terms of the given R by

P = −KTR(RKB)†RK+Y, (3.19)

where † denotes the Penrose generalized inverse and Y are all real matrices that satisfy (3.18).
The solutions of (3.4) for R and P are pointwise in time, but P can be constructed to be

differentiable, so that we have Ṗ. Then F = P(t1), and Q is given by

Q = Ṗ−PA−ATP+PBR−1BTP. (3.20)

It is remarked that Q so determined may not be nonnegative definite even if P is positive

definite.

3.2. Inverse Optimal Problem of Generalized Guidance Law. In this section, an inverse

problem for the linear time-varying guidance law with an impact angle constraint is proposed.

The purpose of the inverse problem is to find the performance indices in the general class to be

optimized

J =
1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

t0

(xTQx+ ru2dt (3.21)

subject to

ẋ = Ax+Bu, x(t0) = x0, (3.22)

where

x =

[
y
v

]
, A =

[
0 1
0 0

]
, B =

[
0
1

]
, (3.23)

that result in

u(t) = −
[

k1
(tf − t)2

x1(t) +
k2

(tf − t)
x2(t)

]
(3.24)

for arbitrary coefficients k1 and k2 in the feasible set. The guidance law (3.24) is rewritten as

u = K(t)x(t) (3.25)
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where the linear time-varying guidance gain matrix, K(t), is

K(t) =

[
− k1
(tf − t)2

− k2
(tf − t)

]
. (3.26)

3.2.1. General Solution. Next, construction of the performance index (3.21) so that the control

law (3.25) is optimal is considered. For the closed-loop linear system (3.22) with a single input

of (3.25), rank KB = rank K = rank B = 1 and the eigenvalue of KB is non-positive. As

described in 3.1, therefore, the eigenvector condition (3.7), the eigenvalue condition (3.9) and

the rank condition (3.11) hold. Thus, by Theorem 1, the performance index can be constructed

with symmetric F, Q, and a positive scalar r that attains its positive absolute minimum. From

Theorem 2, every positive r satisfies the necessary condition of the symmetry of rKB since

KB is scalar. Given r, Theorem 3 provides the real symmetric solution P. Since the symmetric

matrix Y, such that BTY = 0, is given by

Y =

[
y11 0
0 0

]
,

where y11 is arbitrarily real, it is found that (3.19) becomes

P(t) = −KT r(rKB)−1rK+Y =

[
k21/k2
(tf−t)3

r + y11
k1

(tf−t)2
r

k1
(tf−t)2

r k2
(tf−t)r

]
. (3.27)

For convenience, let

y11 �
μ− k21/k2
(tf − t)3

r, (3.28)

where μ is an arbitrary constant. Then, P is represented as

P =

⎡
⎢⎢⎣

μ

(tf − t)3
r

k1
(tf − t)2

r

k1
(tf − t)2

r
k2

(tf − t)
r

⎤
⎥⎥⎦ (3.29)

Here, if the performance index is positive for all x0 and t0, additional condition that P should

be a positive definite is required in view of (3.6); i.e., μ > k21/k2. Substituting P and Ṗ into

(3.20) yields

Q = Ṗ−PA−ATP+PBr−1BTP

=

⎡
⎢⎢⎣

k21 − 3μ

(tf − t)4
r − μ

(tf − t)3
ṙ

k1(k2 − 2)− μ

(tf − t)3
r − k1

(tf − t)2
ṙ

k1(k2 − 2)− μ

(tf − t)3
r − k1

(tf − t)2
ṙ

k22 − k2 − 2k1
(tf − t)2

r − k2
(tf − t)

ṙ

⎤
⎥⎥⎦ . (3.30)

This completes the solution of the inverse problem. Many different [F, Q, r] can be ob-

tained from (3.29) and (3.30) by selecting different μ and r. For our understanding better,

special cases will be considered next.
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3.2.2. Solution for Time-to-go Polynomial Weighting. From Theorem 2, every positive r sat-

isfies the necessary condition of the symmetry of rKB since KB is scalar. Thus, consider the

simple form of the weighting factor r:

r = (tf − t)ρ (3.31)

where ρ is an arbitrarily real constant. Then the following is obtained

P =

⎡
⎢⎢⎣

μ

(tf − t)3−ρ

k1
(tf − t)2−ρ

k1
(tf − t)2−ρ

k2
(tf − t)1−ρ

⎤
⎥⎥⎦ , (3.32)

and, since ṙ = −ρ(tf − t)ρ−1,

Q =

⎡
⎢⎢⎣

k21 + (ρ− 3)μ

(tf − t)4−ρ

k1(k2 + ρ− 2)− μ

(tf − t)3−ρ

k1(k2 + ρ− 2)− μ

(tf − t)3−ρ

k2(k2 + ρ− 1)− 2k1
(tf − t)2−ρ

⎤
⎥⎥⎦ (3.33)

This is the special solution of the inverse problem for time-to-go polynomial r. From (3.33),

however, we see that the simplest solution may be obtained by choosing adequate μ.

3.2.3. Simplest Solution. In the case of the simple form of the weighting factor r of (3.31),

choose

μ = k1(k2 + ρ− 2), (3.34)

then the following is obtained by (3.32) and (3.33) as

P =

⎡
⎢⎢⎣
k1(k2 + ρ− 2)

(tf − t)3−ρ

k1
(tf − t)2−ρ

k1
(tf − t)2−ρ

k2
(tf − t)1−ρ

⎤
⎥⎥⎦ , (3.35)

and

Q =

⎡
⎢⎢⎣
k1{k1 + k2(ρ− 3) + (ρ− 2)(ρ− 3)}

(tf − t)4−ρ
0

0
k2(k2 + ρ− 1)− 2k1

(tf − t)2−ρ

⎤
⎥⎥⎦ . (3.36)

Consider a special case given by choosing

k1 = (2− ρ)(2− ρ) and k2 = 2(2− ρ). (3.37)

Then, Q = 0 with

P = (2− ρ)

[
(2−ρ)(3−ρ)
(tf−t)3−ρ

3−ρ
(tf−t)2−ρ

3−ρ
(tf−t)2−ρ

2
(tf−t)1−ρ

]
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where ρ < 1 for positive P; i.e., the guidance command (3.25) whose coefficients are (3.37)

minimizes the performance index:

J =
1

2

∫ tf

t0

(tf − t)ρu2dt (3.38)

which is subject to (3.22) with terminal constraints x(tf ) = 0 since F = P(tf ) = ∞ for ρ < 1.

This is consistent with the time-to-go weighted optimal guidance proposed by Ryoo et al. [6],

who studied the direct optimal guidance problem with the index (3.38) for ρ ≤ 0. According

to the approach proposed in this chapter, it is seen that a solution exists even if 0 < ρ < 1. In

that case, however, the control law may not be practical because the boundedness of control

input is not guaranteed.

Note that a number of performance indices can be constructed by(3.31), (3.35) and (3.36)

for the given guidance coefficients k1 and k2. For example, consider one simple case given by

F = 0, r = (tf − t)4. (3.39)

and

Q =

[
k1(k1 + k2 + 2) 0

0 (k22 + 3k2 − 2k1)(tf − t)2

]
, (3.40)

for ρ = 4. Recall the solution of EOGL with k1 = 6 and k2 = 4, which minimizes the

performance index with

F = ∞, Q = 0, r = 1,

for ρ = 0. From (3.35) and (3.36), however, the solution also minimizes the index with

F = 0, Q =

[
72 0
0 16(tf − t)2

]
, r = (tf − t)4.

Thus, it is significant that a performance index which is minimized by the control law for

any given k1 and k2 can be constructed even if it is not unique. Moreover, another important

point of these results is that the state weighting matrix Q does not require the nonnegative

condition. This means that the missile may move away from the collision course or have an

oscillating motion in the middle of the homing leg while maintaining optimal characteristics.

3.3. Closing Remarks. It is important that the generalized guidance law with any z = [k1 k2]
contained in F minimizes the quadratic performance index with the corresponding weightings

F, Q and r and also satisfies the terminal constraints with the finite control input. From a prac-

tical viewpoint, these are very useful in designing new guidance laws that meet the additional

requirements or improve the performance of the guidance loop in realistic environment.

4. ANALYTIC SOLUTIONS OF GENERALIZED GUIDANCE LAW FOR SINGLE LAG SYSTEM

[21]

In this chapter, closed-form solutions of the generalized guidance law for a first-order lag

system are derived. Under some, they are obtained by solving a third-order linear time-varying

ordinary differential equation with arbitrary guidance coefficients. Moreover, terminal misses
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due to the system lag and homing geometries for zero miss-distance are studied. Nonlinear

simulations are performed to verify the proposed results.

Under the assumptions of a stationary target, constant missile velocity, and small flight path

angles on planar homing geometry, we have the linear differential equations with a first-order

system dynamics

ẏ(t) = v(t), y(t0) = y0

v̇(t) = aM (t), v(t0) = v0, (4.1)

˙aM =
1

T
(u− aM ), aM (t0) = a0

where y, v, aM , and u are the cross-range, the velocity component perpendicular to the collision

course, the normal acceleration, and the control command, respectively. T denotes the time

constant of the missile control system. The control command is generated by the generalized

impact-angle-control guidance law

u(t) = − k1
t2go
y(T )− k2

tgo
v(t), (4.2)

where tgo = tf − t and tf is the final time.

By manipulating (4.1) and (4.2), a linear time-varying third-order differential equation with-

out a forcing term is obtained as

T ÿ + ÿ +
k2

tf − t
ẏ +

k1
(tf − t)2

y = 0. (4.3)

Thus, seeking the analytic solution of the guidance loop with the first-order lag system is down

to finding the solution of (4.3).

If T is zero, then (4.3) becomes the second-order Cauchy equation as shown in chapter 2.

By using relational expression between the characteristic roots and guidance coefficients for

lag-free systems

k1 = λ1λ2 and k2 = λ1 + λ2 − 1, (4.4)

(4.3) can be rewritten as

T ÿ + ÿ +
λ1 + λ2 − 1

tf − t
ẏ +

λ1λ2
(tf − t)2

y = 0. (4.5)

From the trajectory solutions for lag free system shown in chapter 2, it is seen that the

terminal misses become always zero. In practice, however, it is hard to expect zero misses

when the system lag is considered since the guidance command tends to blow up as the missile

approaches the target. To investigate this phenomenon analytically, we attempt to solve (4.5)

for nonzero T .
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4.1. Basis Solutions. For simplification, we change the independent variable from flight time

x to normalized time x to have the new equation

Ly ≡ D3y − cD2y +
(λ1 + λ2 − 1)ζ

x
Dy − λ1λ2ζ

x2
y = 0 (4.6)

where x = 1− 1/tf , ζ = tf/T , D is a differentiation operator. In addition, L denotes a linear

operator defined by (4.6). It is seen that (4.6) is a third-order linear differential equation with

variable coefficients and has a regular singular point at x = 0.

In order to find nontrivial solutions which are in the form of a power series in x. Let

y = xs
∞∑
k=0

Akx
k. (4.7)

where s is to be determined. By substituting (4.7) into(4.6),

Ly = f(s)A0x
s−3 +

∞∑
k=1

[f(s+ k)Ak + g1(s+ k)Ak−1]x
s−3+k, (4.8)

where

f(x) = s(s− 1)(s− 2), (4.9)

g1(s) = −ζ(s− λ1 − 1)(s− λ2 − 1). (4.10)

In order that Ly equals to zero in an interval including x = 0, the coefficients of all powers

of x in (4.8) must vanish independently. It gives an indicial equation

f(s) = s(s− 1)(s− 2) = 0, (4.11)

which determines three values of s; s1 = 2, s2 = 1, and s3 = 0, and what is known as the

recurrence formula

f(s+ k)Ak = −g1(s+ k)Ak−1

= ζ(s+ k − λ1 − 1)(s+ k − λ2 − 1)Ak−1, (k ≥ 1) (4.12)

which determines each Ak in terms of A0.

4.1.1. First Basis Solution. If s = s1 = 2, the recurrence formula can determine each Ak in

terms of A0; i.e.,

Ak =
(−λ1 + 1 + k)(−λ2 + 1 + k)

k(k + 1)(k + 2)
ζAk−1

=
(−λ1 + 1 + k)(−λ2 + 1 + k)

k(k + 1)(k + 2)

(−λ1 + k)(−λ2 + k)

(k − 1)(k)(k + 1)
ζAk−2 (4.13)

...

=
(−λ1 + 2)k(−λ2 + 2)kζ

k

(2)k(3)kk!
A0
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By substituting the determined A′
ks into (4.7) and neglecting A0, the solution corresponding to

s1 becomes

y1(x) = x22F2(2− λ1, 2− λ2; 2, 3; ζx), (4.14)

where 2F2(2− λ1, 2− λ2; 2, 3; ζx) is known as the hypergeometric function,

mFn(α1, · · · , αM ;β1, · · · , βn; z) =
∞∑
k=0

∏m
i=1(αi)k∏n
j=1(βj)k

zk

k!
, (4.15)

and (α) stands for the Pochhammer symbol as

(α)n = α(α+ 1) · · · (α+ n− 1), (α)0 = 1.

4.1.2. Second Basis Solution. If s = s2 = 1, the recurrence formula for k = 1 cannot be

satisfied for any nontrivial A1 because f(s2 + 1) = 0. In order to overcome the difficulty, a

new setting of y(x, s) with Ak(s), as a function of s, and constant A0 is introduced

y(x, s) = xs
∞∑
k=0

Ak(s)x
k. (4.16)

Assuming that Ak(s) satisfies the recurrence formula, we have

L{(s− s2)y(x, s)} = A0(s− s3)(s− s2)
2(s− s1)x

s−3,

and it is seen that the partial derivative of the right member with respect to s vanishes as s→ s2.

Since the operator ∂/∂s and the linear operator L are commutative, we conclude that

L
{ ∂
∂s

[(s− s2)y(x, s)]
}
s=s2

= 0

so that the function

y2(x) = lim
s→s2

[
∂

∂s
[(s− s2)y(x, s)]

]
(4.17)

is another solution of (4.6). Equations (4.16) and (4.17) show that y2(x) is expressible as

y2 =
∂

∂s

[ ∞∑
k=0

(s− s2)Ak(s)x
s+k

]∣∣∣∣∣
s=s2

=

∞∑
k=0

[
(s− s2)Ak(s)x

s+k lnx+
∂

∂s
{(s− s2)Ak(s)}xs+k

]∣∣∣∣
s=s2

Hence,

y2(x) = lnx

∞∑
k=0

Bk(s2)x
k+s2 +

∞∑
k=0

Ck(s2)x
k+s2 , (4.18)

where

Bk(s2) = lim
s→s2

(s− s2)Ak(s), (4.19)
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Ck(s2) = lim
s→s2

d

ds
{(s− s2)Ak(s)}. (4.20)

Recall the recurrence formula

(s+ k)(s+ k − 1)(s+ k − 2)Ak(s) = ζ(s+ k − λ1 − 1)(sk − λ2 − 1)Ak−1(s), (4.21)

for k ≥ 1. By manipulating (4.19), (4.20), and (4.21), we can determine each Bk(s2) and

Ck(s2) in terms of A0 as follows;

B0(s2) = 0, (4.22)

Bk(s2) =
(1− λ1)k(1− λ2)k
(2)k(1)k(k − 1)!

ζA0 (k ≥ 1), (4.23)

C0(s2) = A0, (4.24)

Ck(s2) = Bk(s2)

⎡
⎣ k∑
j=1

(
1

j − λ1
+

1

j − λ2

)
−

k∑
j=1

(
1

j + 1
+

2

j
+

1

k

)⎤⎦ , (4.25)

for k ≥ 1. In (4.25), Bk(s2)/(j − λ1) (for l = 1, 2 and 1 ≤ j ≤ k) is obviously nonsingular

since there is the multiplicative factor of (j − λ1) in the numerator of Bk(s2). After reduction

of a fraction, we have

Ck(s2) =
pk(λ1, λ2)ζ

kA0

(2)k(1)k(k − 1)!
+
Bk(s2)

k
(k ≥ 1), (4.26)

where

pk(λ1, λ2) =
k∑

j=1

{2j − (λ1 + λ2)}(1− λ1; j)k(1− λ2; j)k

− (1− λ1)k(1− λ2)k

k∑
j=1

(
1

j + 1
+

2

j

)
, (4.27)

and (α; j)n is defined by

(α; j)n = α(α+ 1) · · · (α+ j − 2)(α+ j) · · · (α+ n− 1) =
∏

i=1···n
i �=j

(α+ i− 1), (4.28)

and (α; j)0 = 1. By substituting these coefficients into(4.18), and neglecting the constant A0,

we have

y2(x) =
1

2
(1− λ1)(1− λ2)ζx

2 lnx2F2(2− λ1, 2− λ2; 2, 3; ζx)

+ x2F2(1− λ1, 1− λ2; 1, 2; ζx) +
1

ζ
P (0; ζx) (4.29)
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where

P (n; z) =

∞∑
k=0

pk(λ1, λ2)

(1)k(1)k−1

zk+1−n

(k + 1− n)!
. (4.30)

4.1.3. Third Basis Solution. If s = s3 = 0, the recurrence formula for k = 1 or k = 2 cannot

be satisfied for any nontrivial Ak because f(s3 + 1) = f(s3 + 2) = 0. In a similar way to 0, a

new setting of y(x, s) with Ak(s), as a function of s, and constant A0 is introduced

y(x, s) = xs
∞∑
k=0

Ak(s)x
k. (4.31)

Assuming that Ak(s) satisfies the recurrence formula, we have

L{(s− s3)
2y(x, s)} = A0(s− s3)

3(s− s2)(s− s1)x
s−3.

and it is seen that the partial derivative of the right member with respect to s vanishes as s→ s3.

Since the operator ∂2/∂s2 and the linear operator L are commutative, we conclude that

L

{
∂2

∂s2
[(s− s3)

2y(x, s)]

}
s=s3

= 0

so that the function

y3(x) = lim
s→s3

[
∂2

∂s2
[(s− s3)

2y(x, s)]

]
(4.32)

is the other basis solution of(4.6). Equations (4.31) and (4.32) show that y3(s) is expressible as

y3(x) =
∂2

∂s2

[ ∞∑
k=0

(s− s3)
2Ak(s)x

s+k

]∣∣∣∣∣
s=s3

=

∞∑
k=0

[
(s− s3)

2Ak(s)x
s+k(lnx)2

+2
∂

∂s
{(s− s3)

2Ak(s)}xs+k lnx+ ∂2

∂s2
{(s− s3)

2Ak(s)}xs+ k

]∣∣∣∣∣
s=s3
(4.33)

Hence,

y3(x) = (lnx)2
∞∑
k=0

Bk(s3)x
k+s3 + 2 lnx

∞∑
k=0

Ck(s3)x
k+s3 +

∞∑
k=0

Dk(s3)x
k+s3 , (4.34)

where

Bk(s3) = lim
s→s3

(s− s3)
2Ak(s), (4.35)

Ck(s3) = lim
s→s3

d

ds
{(s− s3)

2Ak(s)}, (4.36)

Dk(s3) = lim
s→s3

d2

ds2
{(s− s3)

2Ak(s)}. (4.37)
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By manipulating(4.35), (4.36), (4.37), and the recurrence formula, we can determine each

Bk(s3), Ck(s3), and Dk(s3) in terms of A0 as follows;

B0(s3) = B1(s3) = 0, (4.38)

Bk(s3) = − (−λ1)k(−λ2)k
(1)k(1)k−1(1)k−2

ζkA0, (4.39)

C0(s3) = 0, C1(s3) = −λ1λ2ζA0, (4.40)

Ck(s3) = Bk(s3)
{ j∑

k=1

(
1

j − λ1 − 1
+

1

j − λ2 − 1

)
− 3

k∑
j=1

1

j
+

2

k
+

1

k − 1
+ 1

}
, (4.41)

D0(s3) = 2A0, D1(s3) = 2(λ1 + λ2)ζA0, (4.42)

Dk(s3) = Bk(s3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{∑j
k=1

(
1

j − λ1 − 1
+

1

j − λ2 − 1

)
−3

∑k
j=1

1

j
+

2

k
+

1

k − 1
+ 1

}2
−∑j

k=1

{ 1

(j − λ1 − 1)2
+

1

(j − λ2 − 1)2
}

+3
∑k

j=1

1

j2
− 2

k2
− 1

(k − 1)2
+ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.43)

for k ≥ 2. In (4.41), Bk(s3)/(j − λ1 − 1) (l = 1, 2) for all j is nonsingular since there

is always the multiplicative factor of in (j − λ1 − 1)(j − λ2 − 1) the numerator of Bk(s3).
In (4.43), on the other hand, Bk(s3)/(j − λ1 − 1)2 may become singular when j = λ1 +
1 even if Bk(s3)/(j − λ1 − 1) is nonsingular. However, Dk(s3) is obviously nonsingular

because Bk(s3)/(j − λ1 − 1)2 for all j will cancel out by expanding the equation. After some

manipulation of (4.41) and (4.43), polynomial expression on λ1 without the rational terms of

1/(j − λ1 − 1) and 1/(j − λ1 − 1)2 can be obtained as

Ck(s3) =
qk(λ1, λ2)ζ

kA0

(1)k(1)k−1(k − 2)!
+Bk(s3)

(
2

k
+

1

k − 1
+ 1

)
(k ≥ 2), (4.44)

Dk(s3) =
rk(λ1, λ2)ζ

kA0

(1)k(1)k−1(k − 2)!
+ 2Bk(s3)

(
1

k
+

3

k − 1
+ 1

)
(k ≥ 2), (4.45)

where

qk(λ1, λ2) = −
k∑

j=1

{2(j − 1)− (λ1 + λ2)}(−λ1; j)k(−λ2; j)k + 3(−λ1)k(−λ2)k
k∑

j=1

1

j
,

(4.46)

rk(λ1, λ2) = −2
∑

∀j1,j2=1,2,··· ,k
j1<j2

{2(j1 − 1)− (λ1 + λ2)}{2(j2 − 1)

− (λ1 + λ2)}(−λ1; j1, j2)k(−λ2; j1, j2)k
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− 2

⎛
⎝−3

k∑
j=1

1

j
+

2

k
+

1

k − 1
+ 1

⎞
⎠ k∑

j=1

{2(j − 1)− (λ1 + λ2)}

(−λ1; j)k(−λ2; j)k − 2

k∑
j=1

(−λ1; j)k(−λ2; j)k − 3(λ1)k(−λ2)k
⎧⎨
⎩3

⎛
⎝ k∑

j=1

1

j

⎞
⎠

2

+
k∑

j=1

1

j2
− 2

k∑
j=1

1

j

(
2

k
+

1

k − 1
+ 1

)⎫⎬
⎭ (4.47)

and (α; j1, j2)n is defined by

(α; j1, j2)n =
∏

i=1···n
i �=j1,j2

(α+ i− 1), (α; j1, j2)0 = 1. (4.48)

By substituting these coefficients into(4.34) and neglecting the constant A0 and a dependent

term on the first basis, we have

y3(x) = 2(3λ1λ2 + λ1 + λ2)ζx+ 22F2(−λ1,−λ2; 1, 1; ζx)
− 2λ1λ2ζx[(lnx+ 3)2F2(1− λ1, 1− λ2; 1, 2, ζx) + 2F2(1− λ1, 1− λ2; 2, 2; ζx)]

− (−λ1)2(−λ2)2(ζx)2 lnx
⎡
⎣
(
1

2
lnx+ 1

)
2F2(2− λ1, 2− λ2; 2, 3; ζx)

+2F2(2− λ1, 2− λ2; 3, 3; ζx)

⎤
⎦

+ 2 lnxQ(0; ζx) +R(0; ζx) (4.49)

where

Q(n̄, z) =

∞∑
k=2

qk(λ1, λ2)

(1)k−1(1)k−2

zk−n

(k − n)!
, (4.50)

R(n̄, z) =

∞∑
k=2

rk(λ1, λ2)

(1)k−1(1)k−2

zk−n

(k − n)!
, (4.51)

Even if the roots of the characteristic equation λ1 and λ2 are complex conjugates of each

other, all of the basis solutions are absolutely real functions because all λ-relevant terms of the

solutions are composed of multiplicative and additive terms of complex conjugates. Moreover,

we can see that P (n; z), Q(n; z), and R(n; z) are bounded because their partial sums are all

Cauchy sequences. Since every Cauchy sequence in R converges to an element of R, the

infinite series functions are bounded for all z.

4.2. General Solutions. A general solution of the third-order differential equation is obtained

by a linear combination of the three basis solutions. For the purpose of simplification, the

general solution is assumed as

y(x̃) = ζ2c1y1(x̃) + ζλ1λ2c2y2(x̃) + c3y3(x̃), (4.52)
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with change of the independent variable such that

x̃ = ζx =
tgo
T
, (4.53)

where c1, c2, and c3 are arbitrary constants. For more convenience, we introduce new notations

of the hypergeometric functions

φ̃λ(m; x̃) =
(2− λ1)m−2(2− λ2)m−2

(1)m−1(1)m
2F(m− λ1,m− λ2;m,m+ 1; x̃), (m = 2, 3, · · · ),

(4.54)

φλ(m; x̃) =
(−λ1)m(−λ2)m
(1)m−1(1)m

2F(m− λ1,m− λ2;m,m+ 1; x̃), (m = 1, 2, 3, · · · ), (4.55)

ψλ(m; x̃) =
(−λ1)m(−λ2)m

(1)m(1)m
2F(m− λ1,m− λ2;m+ 1,m; x̃), (m = 0, 1, 2, · · · ), (4.56)

then their derivatives become

∂

∂x̃
φ̃λ(m; x̃) = φ̃λ(m+ 1; x̃),

∂

∂x̃
φλ(m; x̃) = φλ(m+ 1; x̃),

∂

∂x̃
ψλ(m; x̃) = ψλ(m+ 1; x̃)

respectively.

By substituting (4.14), (4.29), and (4.49) into (4.52) and replacing some notations with

(4.53)-(4.56), the closed-form trajectory solution of the generalized guidance law can be ex-

pressed as

y(x̃) = 2μc3x̃+ 2c1x̃
2φ̃λ(2; x̃) + {c2 − 2c3(3 + lnx)}x̃φλ(1; x̃)

+ {c2 − c3(2 + lnx)}(lnx)x̃2φλ(2; x̃) + 2c3ψλ(0; x̃)− 2c3x̃ψλ(1; x̃),

− 4c3x̃
2 lnxψλ(2; x̃) + c2P̃ (0; x̃) + 2c3 lnxQ(0; x̃) + c3R(0; x̃) (4.57)

where

μ = 3λ1λ2 + λ1 + λ2, (4.58)

and the series functions of P̃ (n; x̃), Q(n; x̃), and R(n; x̃) are

P̃ (n; x̃) = λ1λ2

∞∑
k=0

pk(λ1, λ2)

(1)k(1)k−1

x̃k+1−n

(k + 1− n)!
(4.59)

Q(n; x̃) = λ1λ2

∞∑
k=0

qk(λ1, λ2)

(1)k−1(1)k−2

x̃k−n

(k − n)!
(4.60)

R(n; x̃) = λ1λ2

∞∑
k=0

rk(λ1, λ2)

(1)k−1(1)k−2

x̃k−n

(k − n)!
(4.61)

respectively. Here, pk(λ1, λ2), qk(λ1, λ2), rk(λ1, λ2) are constants which depend only on λ1
and λ2 as shown in (4.27), (4.46), and (4.47). It is noted that derivatives of the series functions
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become

∂

∂x̃
P̃ (n; x̃) = P̃ (n+ 1; x̃),

∂

∂x̃
Q(n; x̃) = Q(n+ 1; x̃), and

∂

∂x̃
R(n; x̃) = R(n+ 1; x̃)

From (4.1), moreover, the velocity perpendicular to the predetermined collision course and

the normal acceleration are explicitly expressible as

v(x̃) = − 1

T

⎡
⎢⎢⎢⎢⎣

2μc3 + 4c1x̃φ̃λ(2; x̃) + 2c1x̃
2φ̃λ(3; x̃)− {c2 − 2c3(4 + lnx)}φλ(1; x̃)

+2{c2(1 + lnx)− c3(2 + lnx)2}x̃φλ(2; x̃)
+{c2 − c3(2 + lnx)}(lnx)x̃2φλ(3; x̃)
−2c3(3 + 4 lnx)x̃ψλ(2; x̃)− 4c3x̃

2 lnxψλ(3; x̃)

+c2P̃ (1; x̃) + 2c3x̃
−1Q(0; x̃) + 2c3 lnxQ(1; x̃) + c3R(1; x̃)

⎤
⎥⎥⎥⎥⎦

(4.62)

aM (x̃) =
1

T 2

⎡
⎢⎢⎢⎢⎢⎢⎣

4c1φ̃λ(2; x̃) + 8c1x̃φ̃λ(3; x̃) + 2c2x̃
2φ̃λ(4; x̃)− 2c3x̃

−1φλ(1; x̃)
+{c2(5 + lnx)− 2c3(3 + lnx)(4 + lnx)}φλ(2; x̃)
+{c2(3 + 4 lnx)− 2c3(1 + lnx)(5 + 2 lnx)}x̃φλ(3; x̃)
+{c2 − c3(2 + lnx)}(lnx)x̃2φλ(4; x̃)− 2c3(7 + 4 lnx)ψλ(2; x̃)

−2c3(5 + 8 lnx)x̃ψλ(3; x̃)− 4c3(lnx)x̃
2ψλ(4; x̃) + c2P̃ (2; x̃)

−2c3x̃
2Q(0; x̃) + 4c3x̃

−1Q(1; x̃) + 2c3 lnxQ(2; x̃) + c3R(2; x̃)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.63)

By using (4.2), (4.57), and (4.62), the control input u(x̃) can be easily derived. From (4.57),

(4.62), and (4.63), it is seen that the analytic solutions are expressed by combinations of poly-

nomial, logarithmic, and a lot of series functions. From (4.57), since limx→0(x̃ lnx) = 0 and

limx→0{lnxQ(0; x̃)} = 0, the trajectory solution is bounded for all x̃ ∈ [0, ζ]. However, it is

seen that there exist unbounded terms such as (lnx)φλ(1; x̃) and x̃−1φλ(1; x̃) in the solutions

of v(x̃) and aM (x̃). In addition, from (4.63), it is expected for the acceleration to blow up in

proportion to x̃−2 as x̃→ 0. Since the coefficients c1, c2, and c3 remain constant regardless of

the independent variable x̃, we can have the coefficients as functions of initial conditions by let-

ting y(ζ) = y0, v(ζ) = v0, and a(ζ) = a0; i.e., c1(y0, v0, a0), c2(y0, v0, a0), and c3(y0, v0, a0)
for given ζ, T , and guidance coefficients.

4.3. Special Cases. Now consider that the characteristic roots of λ1 and λ2 are positive inte-

ger. In this case, most of the series functions can be rewritten as explicit polynomial functions

with finite power terms. From (4.54) and (4.56), since λ1 ≥ λ2 and (m− λ2)λ2−m+1 = 0(l =
1, 2, · · · ), we have

φ̃λ(m; x̃) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−λ1)m−2(−λ2)m−2

(1)m−1(1)m

∑λ1−m
k=0

(m− λ1)k(m− λ2)k
(m)k(m+ 1)k

x̃k

k!
2 ≤ m ≤ λ1

(−λ11)m−2(−λ2)m−2

(1)m−1(1)m
2F2(m− λ1,m− λ2;m,m+ 1; x̃), λ1 < m ≤ λ2 + 2

0, m > λ2 + 2
(4.64)
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φλ(m; x̃) =

⎧⎨
⎩
(−λ1)m(−λ2)m
(1)m−1(1)m

∑λ2−m
k=0

(m− λ1)k(m− λ2)k
(m)k(m+ 1)k

x̃k

k!
1 ≤ m ≤ λ2

0, m > λ2

(4.65)

ψλ(m; x̃) =

⎧⎨
⎩
(−λ1)m(−λ2)m
(1)m−1(1)m

∑λ2−m
k=0

(m− λ1)k(m− λ2)k
(m+ 1)k(m+ 1)k

x̃k

k!
0 ≤ m ≤ λ2

0, m > λ2

(4.66)

In addition, from (4.27) and (4.46), we have pλ1+1(λ1, λ2) = 0(l = 0, 1, 2, · · · ) and qλ1+1

(λ1, λ2) = 0(l = 0, 1, 2, · · · ), then

P̃ (n, x̃) = λ1λ2

λ1−1∑
k=1

pk(λ1, λ2)

(1)k(1)k−1

x̃k+1−n

(k + 1− n)!
, (4.67)

Q(n, x̃) =

λ1∑
k=2

qk(λ1, λ2)

(1)k−1(1)k−2

x̃k−n

(k − n)!
(4.68)

On the other hand, R(n; x̃) may not be expressed as an explicit polynomial function. From

(4.47), since

rk(λ1, λ2) = −2(−λ1)λ1(−λ2)λ2(1)k−λ1−1(1)k−λ2−1 for k > λ1,

R(n; x̃) can be rewritten as a combination of finite power terms and hypergeometric function

as

R(n, x̃) =

λ1∑
k=2

rk(λ1, λ2)

(1)k−1(1)k−2

x̃k−n

(k − n)!

− 2(−1)λ1+λ2λ1(1)λ2

(λ1 − λ2 + 1)λ2(1)λ1+1−n
x̃λ1+1−n

3F3(1, 1, 1 + λ1 − λ2;λ1, λ1 + 1, λ1 + 2− n; x̃).

(4.69)

Thus, by substituting (4.65)-(4.69) into (4.57) and (4.62)-(4.63), closed-form solutions of the

guidance law with positive integer characteristic roots for a 1st-order lag system are calculated

more easily.

Consider a special case given by choosing λ1 = 3 and λ2 = 2, then a pair of the guidance

coefficient [k1, k2] becomes [6, 4] which is that for EOGL. In this case, solutions of the guid-

ance law can be drawn by substituting λ1 = 3 and λ2 = 2 into the general solutions. From

(4.57) and (4.64) to (4.69), the trajectory solution of EOGL for a single lag system becomes

y(x̃) = 2c3 + (6c2 + 10c3)x̃+ (c1 − 18c− 2− 86c3)x̃
2 −

(
c2
40

3
c3

)
x̃3 − 12c3x̃ lnx

+ (6c2 + 46c3)x̃
2 lnx+ 2c3x̃

3 lnx− 6c3x̃
2(lnx)2 +

1

12
c3x̃

4
2F2(1, 1, 2; 3, 4, 5; x̃).

(4.70)
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As another example, consider the case of λ2 = 2. Since k1 = λ1λ2 and k2 = λ1 + λ2 − 1,

then we easily see that k1 = k2 = λ1. Hence, the guidance law for λ2 = 1 is equivalent to

conventional PNG with navigation constant N = λ1. Assuming that N is an integer larger

than 3, solutions of the guidance law can be drawn by substituting λ1 = N and λ2 = 1 into the

general solutions. From (4.64) to (4.66), we have φ̃λ(2; x̃) =
∑N−2

k=0
(2−N)k

(2)k(2)k+1
x̃k, φ̃λ(3; x̃) =

N
∑N−3

k=0
(3−N)k(k+1)
(1)k+2(1)k+3

x̃k, φ̃λ(4; x̃) = φλ(2; x̃) = φλ(3; x̃) = φλ(4; x̃) = ψλ(2; x̃) = ψλ(3; x̃)

= ψλ(4; x̃) = 0, φλ(1; x̃) = ψλ(1; x̃) = N , and ψλ(0; x̃) = 1. Assuming that N is an integer

larger than 2, from (4.67) to (4.69) with (4.27), (4.46), and (4.47), we have

P̃ (n; x̃) = −
N−1∑
k=1

(−N)k−1

(1)k

x̃k+1−n

(k + 1− n)!
, Q(n; x̃) =

N∑
k=2

(−N)k
(1)k−1

x̃k−n

(k − n)!
,

R(n; x̃) = 2
N∑
k=2

r̃k
(1)k−1

x̃k−n

(k − n)!
− 2

(−1)N+1x̃N+1−n

(N + 1− n)!
2F2(1, 1;N + 1, N + 2− n; x̃),

where

r̃k =

k∑
j2=3

(2j2 −N − 3)(−N)j2−1(j2 −N)k−j2

j2 − 2
+

⎛
⎝−3

k∑
j=1

1

j
+

2

k
+

1

k − 1
+ 1

⎞
⎠ (−N)k

−N(2−N)k−2.

Here, we see that P̃ (n; x̃) = −Q(n; x̃) by substituting k = k′ − 1 in P̃ (n; x̃). Thus, by (4.57),

the trajectory solution of PNG for a single lag system becomes

y(x̃) = 2c3 + {Nc2 + 2c3(1−N lnx)}x̃− (c2 − 2c− 3 lnx)

N∑
k=2

(−N)k
(1)k−1

x̃k

k!

+ 2c1x̃
2
N−2∑
k=0

(2−N)k
(2)k(2)k+1

x̃k + 2c3

N∑
k=2

r̃k
(1)k−1

x̃k

k!

− 2c3
(−1)N+1x̃N+1

(N + 1)!
2F2(1, 1;N + 1, N + 2; x̃). (4.71)

4.4. Terminal Miss. Now consider terminal misses due to the system lag. From (4.57) and

(4.62), we have the miss-distance and the impact angle error denoted by Δyf and Δγ
f

as

Δyf = y(x̃ = 0) = 2c3, (4.72)

Δγ
f
=
v(x̃ = 0)

VM

=
λ1λ2
VMT

[−c2 + 2c3(Λ + E)], (4.73)

where

Λ = 1− (λ1
−1 + λ2

−1)− (λ1λ2)
−1 and E = lim

ω→0
lnω. (4.74)
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Here, it is seen that Δγ
f

has a slowly divergent element E as ω → 0 while Δyf is bounded. If

c3 is zero, interestingly, we see that not only does Δyf become zero, but Δγ
f

is bounded. Note

that the coefficients c2, c3 which are closely related to the misses are functions of guidance

coefficients as well as initial conditions. It implies that it is possible to design the guidance law

to minimize the terminal misses due to the system lag.

In order to investigate sensitivities of the terminal misses to the initial homing geometry

under the assumption of α0 = 0, the terminal misses are rewritten in terms of γ0 and γ
f

by

substituting y0 = VM tfγf
and v0 = VM (γ0 − γ

f
) into the coefficients c2, c3 as

Δyf
VMT

=

(
Δyf
VMTγ0

∣∣∣∣
γ
f
=0

)
γ0 +

(
Δyf
VMTγf

∣∣∣∣
γ0=0

)
γ
f
, (4.75)

γ
f
=

(
Δγ

f

γ0

∣∣∣∣
γ
f
=0

)
γ0 +

(
Δγ

f

γ
f

∣∣∣∣
γ0=0

)
γ
f
, (4.76)

where

Δyf
VMTγ0

∣∣∣∣
γ
f
=0

=
2

VMT

∂c3
∂γ0

∣∣∣∣
γ
f
=0

,
Δyf
VMTγf

∣∣∣∣
γ0=0

=
2

VMT

∂c3
∂γ

f

∣∣∣∣
γ0=0

Δγ
f

γ0

∣∣∣∣
γ
f
=0

=
λ1λ2
VMT

[
− ∂c2
∂γ0

∣∣∣∣
γ
f
=0

+ 2(Λ + E
∂c3
∂γ0

∣∣∣∣
γ
f
=0

)

]
,

Δγ
f

γ
f

∣∣∣∣
γ0=0

=
λ1λ2
VMT

[
− ∂c2
∂γ

f

∣∣∣∣
γ0=0

+ 2(Λ + E
∂c3
∂γ

f

∣∣∣∣
γ0=0

)

]
,

From (4.75) and (4.76), it is seen that the normalized terminal misses depend only on λ1, λ2,

and ζ. It implies that the terminal miss-distance due to the system lag can be reduced by

choosing an adequate pair of guidance coefficients of the generalized guidance law for given

homing geometry. Especially, from (4.72)-(4.75), we have a condition for zero miss-distance

and finite impact angle error as

c2(γ0 , γf
, a0, ζ, T, λ1, λ2) = 0. (4.77)

From this result, it is noted that there exists the optimal initial geometry in the homing phase

to minimize terminal misses due to the system lag.

Figure 8 to Figure 9 provide normalized terminal miss contours of k1 versus k2 for ζ = 20,

15, 10, and 5. In the figures, the contrast between light and shade represents the magnitude of

terminal misses; a brighter region stands for better performance. It is seen that small ζ yields

bad performance, as evidenced by lack of maneuvering time. In a miss-distance point of view,

while the guidance coefficients in the region between λ2 = 1 and λ2 = λ1 provides good

performance for large ζ, those in the region of 1 ≤ λ2 ≤ 2 are better selection for small ζ.

It is noted that the guidance coefficients in F3 provide bad performance even if the solutions

of them for a lag-free system satisfy the terminal constraints. From Figure 9, it is noted that

the guidance coefficients near to the line of λ2 = 2 cause small impact angle errors for large
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ζ while those in the region of 1 < λ2 < 2 provide better performance for small ζ. It is found

from the results that λ2 becomes a dominant factor in the terminal misses due to the system

lag. Most of all, it is very important that λ2 ≈ 2 or less provides more robust performance

for impact angle control against system lag. This fact will provide useful clues in designing an

impact-angle-control guidance law.

(a)ζ = 20 (b)ζ = 15

(c)ζ = 10 (d)ζ = 5

FIGURE 8. Sensitivity of miss distance to impact angle.
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(a)ζ = 20 (b)ζ = 15

(c)ζ = 10 (d)ζ = 5

FIGURE 9. Sensitivity of impact angle error to impact angle.

4.5. Verification. In order to examine the analytic solution of the generalized impact angle

control guidance for a single lag system, a simple linear simulation is carried out. It is assumed

that the flight time tf is given as 10 sec and the missile is taken as a first-order system whose

time constant T is 1 sec. In addition, the initial conditions, y0 and v0, are assumed to be 10 m

and 10 m/sec, respectively. A pair of guidance coefficients which is one of TOGL coefficients

is chosen for this examination. In Fig. 10 to Fig. 12, missile positions, velocities perpendicular

to the predetermined collision course, and the normal accelerations of missile are illustrated.

The analytic solutions for a first-order lag system shown in scattered symbols are compared

with linear simulation results and the analytic solutions for lag-free system. In the figures, it

is observed that the analytic solutions are in perfect agreement with the simulation results and

show different time histories from those for a lag-free system. It is noted that the acceleration

blows up near the final time even if TOGL is adopted. Especially, approximated solutions

using nth order polynomials instead of the infinite series functions are compared with the exact

solutions. From the results, polynomial approximation with a degree greater than 5 provides

good agreement with the exact solution. Thus, it is expected that good approximated solutions

which are easy to utilize is possible.
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FIGURE 10. Comparisons between analytic solutions and simulation results(position).

FIGURE 11. Comparisons between analytic solutions and simulation re-

sults(normal velocity).

4.6. Closing Remarks. In this chapter, analytic solutions of a generalized guidance law with

arbitrary guidance constants under the assumption that the missile is given by a first-order lag

system have been investigated by solving a third-order linear time-varying ordinary differential

equation. It is noted that the solutions are represented by combinations of polynomial func-

tions, a logarithmic function, and a lot of bounded infinite series functions. It is found that the

guidance command, the acceleration of the missile, and the velocity component perpendicu-

lar to the collision course tend to diverge as the missile approaches the target mathematically.

Terminal misses due to the system lag have been derived by using the analytic solutions and

effects of guidance coefficients on the terminal misses are investigated. Moreover, effective

homing geometries
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FIGURE 12. Comparisons between analytic solutions and simulation results(acceleration).

5. CONCLUSION

In this paper, the following three topics are mainly stated; a generalized impact-angle-control

guidance law with a arbitrary pair of guidance coefficients, optimality of the generalized guid-

ance law, and analytic solutions of the generalized guidance law for a single-lag system.

The generalized guidance law is based on a practical homing loop structure with two guid-

ance coefficients. Explicit closed-form solutions for a lag-free system show three classes of

trajectories depending on the guidance coefficients: one is the time-to-go polynomial trajec-

tory, another is the trajectory combined with polynomial and logarithmic functions, and the

other is the oscillatory trajectory combined with polynomial, logarithmic, and harmonic func-

tions. The entire feasible sets of the guidance coefficients to satisfy the terminal constraints

have been demonstrated. Based on the closed-form solutions, a practical and precise time-to-

go calculation method is proposed as well.

Another important work is to prove the optimality of the generalized guidance law. By

solving an inverse optimal problem, it is found that the guidance law with arbitrary guidance

coefficients can minimize a corresponding performance index. In addition, the relationship

between the guidance coefficients and the corresponding quadratic performance index has been

discussed. The proposed results serve as a theoretical foundation to design the guidance law to

improve certain performance.

Analytic solutions of the generalized guidance law for a single-lag system have been investi-

gated by solving third-order linear time-varying ordinary differential equations. It is found that

the solutions are represented by combinations of polynomial functions, a logarithmic function,

and infinite power series functions. The analytic solutions provide an insight into the blowing-

up behavior of the homing loop as the missile approaches the target. Terminal misses due

to the system lag have been investigated by using the analytic solutions, and effects of guid-

ance coefficients on the terminal misses have been discussed. Effective homing geometries
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which are advantageous in terms of the terminal misses are also proposed. Furthermore, good

approximated solutions which are easy to utilize is possible from the results.
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