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ABSTRACT. In this paper, missile homing guidance laws to control the impact angle and time

are proposed based on the polynomial function. To derive the guidance commands, we first

assume that the acceleration command profile can be represented as a polynomial function with

unknown coefficients. After that, the unknown coefficients are determined to achieve the given

terminal constrains. Using the determined coefficients, we can finally obtain the state feedback

guidance command. The suggested approach to design the guidance laws is simple and provides

the more generalized optimal solutions of the impact angle and time control guidance.

1. INTRODUCTION

Advanced guidance laws with several terminal constraints as well as zero miss-distance have

been proposed for the guidance performance improvement, high kill probability, and warhead

effectiveness maximization, and survivability enhancement. To achieve these objectives, the

impact angle and time have been considered as important terminal state constraints for homing

missiles.

For anti-tank missiles or air-to-surface missiles, the impact angle constraint is needed for the

purpose of maximizing the warhead effect and hitting weak spots on the target. For decades,

many impact angle control guidance laws have been proposed based on the optimal control

theory or nonlinear control design methods, etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16]. The authors of [1] proposed a suboptimal guidance law with a terminal body

attitude constraint for reentry vehicles. An impact angle control guidance law for varying

velocity missiles and maneuvering targets was derived in [2], where the proposed law based

on the optimal control theory is combined with a target tracking filter for real applications.

In [3], a generalized form of energy optimal guidance for arbitrary order missile dynamics

was proposed, which achieves both the desired impact angle and zero miss-distance. As an

extension of this study, another type of the optimal guidance law was developed in [4], by

solving a linear quadratic optimal control problem with a time-to-go weighted energy cost.

Impact angle constrained guidance laws with additional constraint on terminal acceleration

were suggested in [5] and [13], where the proposed laws can nullify the terminal maneuvering
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acceleration for command saturation avoidance and robustness against time-to-go estimation

errors. Modified proportional navigation guidance (PNG) laws to control the impact angle

were also devised in [6, 7, 8]. In [6], a time-varying biased PNG law with a bias term, which

is a function of time-to-go, was suggested. In a surface-to-surface planar engagement, the

authors of [7, 8] proposed composite guidance laws for intercepting a stationary or moving

target with a desired impact angle, on the basis of the conventional PNG law. These proposed

laws consist of an orientation guidance for covering various terminal angles and the classical

PNG law with a specific navigation constant. They also proposed an guidance law by using

the state-dependent Riccati equation (SDRE) technique [9]. In addition to the above guidance

laws, other guidance laws to satisfy the terminal angle constraint have been developed: terminal

body angle constrained guidance law based on the linear quadratic terminal control problem

[10], impact angle controller for minimum flight time [11], impact angle control law derived

by the backstepping control method [12], and optimal solution to a simple rendezvous problem

which can be used to control the impact angle [15, 16].

Modern battleships are equipped with advanced defense systems such as anti-air defense

missile systems, ECM systems, and CIWS (close-in weapon system). These defensive weapons

dramatically reduce the survivability of anti-ship missiles, so that sometimes the missiles can-

not accomplish their missions. In order to enhance the survivability against the defense sys-

tems, therefore, the guidance laws with terminal time constraint, which can be used for the

salvo attack or cooperative attack missions, have been devised. Despite a number of studies on

impact angle control guidance problems for decades, studies on impact time control guidance

laws have attracted more attention in recent years. The proposal in [19, 27] for a suboptimal

guidance law with the impact time constraint appears to be the first attempt to design an impact

time control guidance law. The authors also proposed a new guidance law to control both of

the impact time and angle, by using the jerk control term and optimal control theory [20, 28].

In [21], the PNG law with a time-varying navigation constant, called cooperative proportional

navigation (CPN), was suggested to make the missiles performing the cooperative attack mis-

sion intercept the target at the same arrival time. Based on nonlinear control design methods,

impact time and angle control laws were derived in [22, 23, 24]. In [22], the feedback lin-

earization method is used to obtain the impact time control law, and the backstepping control

method and modified PNG law are utilized to design the impact time and angle controller in

[23]. The impact time and angle control law in [24] was derived from the proposed line-of-sight

rate shaping technique and second-order sliding mode control, in which both the line-of-sight

(LOS) angle and rate profiles are determined to satisfy given terminal constraints and then slid-

ing mode control is designed to track the obtained LOS rate profile. A homing guidance law,

consisting of the well-known optimal impact angle control law and an additional command to

meet the impact time constraint, was presented in [25].

In this paper, the simple approach, which was first proposed by Tahk of [14], is applied

to design homing guidance laws with impact angle and time constraints. This approach is

that firstly the guidance command is assumed to be represented as a polynomial function with

unknown coefficients and then the coefficients of the assumed function are determined to satisfy

the given terminal constraints. From these procedures, we can finally derive a feedback form of
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the guidance command that can achieve the given constraints. As compared with the optimal

control theory or nonlinear control design methods, Tahks design approach is very simple and

easy for developing the terminal state constrained guidance laws, and it can also give a more

generalized optimal solution of the guidance law.

This paper includes two major topics: polynomial function based impact-angle-control guid-

ance law and impact-time-control guidance law. Therefore, this paper is organized as follows:

Section 2 presents impact angle controller, which can hit a stationary target with a designated

impact angle. In Section 3, the impact time constrained guidance is proposed using the lin-

earized homing problem with constraint on the homing trajectory length. In Section 4, the

performance and characteristics of the proposed guidance laws are demonstrated through non-

linear simulations with various engagement conditions. The final section discusses the conclu-

sions of this work.

2. POLYNOMIAL GUIDANCE WITH IMPACT ANGLE CONSTRAINT

The impact angle control guidance for a stationary target is proposed in this section. The

proposed guidance is able to achieve both terminal zero acceleration and angle constraints. In

order to derive the guidance law, we first assume that the guidance command can be represented

as the time-to-go polynomial function with two unknown coefficients. And then we determine

the unknown coefficients which can satisfy the given terminal constraints. Finally, the feedback

acceleration command can be obtained from the determined coefficients and polynomial func-

tion. In this section, we also propose a time-to-go calculation method for the implementation

of the proposed guidance law.

2.1. Problem Statement. Let us consider the two-dimensional engagement geometry against

a stationary target, as depicted in Fig. 1. The inertial frame is denoted as (XI , YI) , and the

rotated frame by the desired impact angle, γf , is denoted as (Xf , Yf ) . The subscripts M and

T represent the missile and target. VM , aM and γM represent the missile velocity, acceleration

perpendicular to the velocity, and flight path angle in inertial frame, respectively. γ denotes the

impact angle error, which is the flight path angle w.r.t Xf -axis. The other variables in Fig. 1

are self-explanatory.

Assuming the constant missile velocity and small impact angle error, the linearized equa-

tions of the motion for this engagement can be derived as

ẏ ≈ VMγ = ν, y(t0) = y0

ν̇ = aM , v(t0) = VMγ0 = ν0 (2.1)

where y and v are the lateral position and velocity perpendicular to Xf -axis. The subscript 0
presents the initial time. In this engagement kinematics, we neglect the gravitational force and

autopilot lag.

In the optimal guidance problems, the acceleration command solutions, including PNG, are

represented as time-to-go tgo polynomial functions. In view of this observation, let the function

of the acceleration command, which can control the terminal angle, be defined as the following
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FIGURE 1. Two-dimensional Engagement Geometry

polynomial function

aM (t) = cmt
m
go + cnt

n
go (2.2)

where tgo = tf − t and guidance gainsm, n are positive constants with n > m ≥ 0. Using this

assumed function, the states feedback command for the impact angle control can be derived.

2.2. Guidance Command for Impact-Angle-Control. In Eq.(2.2), only two coefficients cm
and cn are used to determine a unique solution because the two terminal conditions, y(tf ) =
ν(tf ) = 0, are required for the impact angle control problem. Note that the acceleration at the

final time, aM (tf ), can be zero when m > 0 in Eq. (2.2).

When substituting Eq. (2.2) into Eq. (2.1), and thereafter integrating the resulting equation

using initial conditions, the lateral position and velocity at tf are calculated as

y(tf ) = y0 + ν0 t̂go + cm

(
t̂m+2
go

m+ 2

)
+ cn

(
t̂n+2
go

n+ 2

)

ν(tf ) = ν0 + cm

(
t̂m+1
go

m+ 1

)
+ cn

(
t̂n+1
go

n+ 1

)
(2.3)



POLYNOMIAL FUNCTION BASED GUIDANCE FOR IMPACT ANGLE AND TIME CONTROL 309

where t̂go = tf − t0. The coefficients are then determined from the terminal constraints,

y(tf ) = ν(tf ) = 0, as follows:

cm =
(m+ 1)(m+ 2)

(n−m)t̂m+2
go

[
(n+ 2)y0 + t̂goν0

]
cn =

(n+ 1)(n+ 2)

(m− n)t̂n+2
go

[
(m+ 2)y0 + t̂goν0

]
(2.4)

The guidance command at t = t0 can be obtained by inserting Eq. (2.4) into Eq. (2.2). If

the coefficients are recalculated at each time step, the state feedback command for the impact-

angle-control can be finally expressed as

aIAC (t) = −(m+ 2)(n+ 2)

t2go
y(t)− (m+ n+ 3)

tgo
ν(t) (2.5)

where m and n are chosen to be any positive real value. If missiles are equipped with a passive

seeker which provides LOS angle measurements, σ, the command of Eq. (2.5) can be rewritten

by substituting y ≈ R(γ
f
− σ) and R ≈ VM tgo into Eq. (2.5) as

aIAC (t) = −VM
tgo

[−(m+ 2)(n+ 2)σ(t) + (m+ n+ 3)γM (t) + (m+ 1)(n+ 1)γ
f

]
(2.6)

where σ and γM are measured from the built-in seeker and INS on board the missile, and

γ
f

is predetermined before the launch. However, tgo cannot be directly measured from any

equipment, therefore we should estimate the time-to-go using an appropriate method with INS

information and the estimated relative range. The time-to-go calculation method for the imple-

mentation is discussed in Sec. 2.3.

The closed-form trajectory solutions of the proposed law can be easily obtained by solving

the second-order ordinary differential equation, which is calculated by substituting Eq. (2.5)

into Eq. (2.1). The closed-form solutions of differential equation, the same form as Euler-

Cauchy equation in [26], are expressed in two time-to-go terms.

y(t) = C1t
n+2
go + C2t

m+2
go

ν(t) = −C1(n+ 2)tn+1
go − C2(m+ 2)tm+1

go

aM (t) = C1(n+ 2)(n+ 1)tngo + C2(m+ 2)(m+ 1)tmgo (2.7)

where the constants of integration C1 and C2 are

C1 =
(m+ 2)y0 + t̂goν0

(m− n)t̂n+2
go

, C2 =
(n+ 2)y0 + t̂goν0
(n−m)t̂m+2

go
(2.8)

From the solutions given in Eq. (2.7), the proposed guidance can be regarded as a more gen-

eral form of the impact angle controller because the choice of m and n are not restricted; that

is, both the impact angle error and miss-distance converge to zero as t→ tf for the nonnegative

real values of the gains. According to several combinations of m and n, the proposed accel-

eration command also involve the various optimal impact angle controllers previously studied

in the literature [3, 4]. If m = 0 and n = 1, Eq. (2.5) is the same as the optimal control law
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in [3], and also identical to the optimal guidance law proposed in [4] when the guidance gains

have integer values with n = m+ 1 relation, as shown in Table. 1

TABLE 1. Examples of Proposed Impact Angle Control Law

Gains Guidance Command Note

m = 0, n = 1 − 6
t2go
y(t)− 4

tgo
ν(t) Same as [3]

m = 0.5, n = 1 − 7.5
t2go
y(t)− 4.5

tgo
ν(t) New form

m = 1, n = 2 − 12
t2go
y(t)− 6

tgo
ν(t) Same as [4]

m = 1, n = 3 − 15
t2go
y(t)− 7

tgo
ν(t) New form

m = 2, n = 3 − 20
t2go
y(t)− 8

tgo
v(t) Same as [5]

Using the inverse problem approach of the optimal control theory [18, 29, 30], we can find

the performance index of the proposed guidance inversely from the command in Eq. (2.5). As

a result, the performance index associated with Eq. (2.5) is obtained as

J =
1

2
xT (tf )Sfx(tf ) +

1

2

∫ tf

0
(xTQx+ ru2)dt, x =

[
y, ν

]T
, u = aM (2.9)

where

Sf = lim
tgo→0

⎡
⎣ (m+2)(n+2)(n+1)

tm+3
go

(m+2)(n+2)

tm+2
go

(m+2)(n+2)

tm+2
go

(n+m+3)

tm+1
go

⎤
⎦ = ∞

Q =

⎡
⎣ (m+2)(n+2)(n−m−1)

tm+4
go

0

0 (n+2)(n−m−1)

tm+2
go

⎤
⎦ (2.10)

r =
1

tmgo

From the above performance index, it can be observed that, if m = 0, n = 1, the perfor-

mance index J = 1
2

∫ tf
0 u2dt, and if n = m + 1,m > 0, then J =

∫ tf
0

u2

tmgo
dt. Therefore, the

suggested guidance includes the time-to-go weighted optimal impact angle controller as well as

the energy optimal angle controller, as expected; that is, we can regard the proposed guidance

as a more generalized optimal impact angle control law even though the guidance was derived

on the basis of the time-to-go polynomial function of the acceleration command.

2.3. Time-to-go Calculation Method. As mentioned in the previous section, we need to cal-

culate the accuracy time-to-go using the relative range estimate for the implementation of the

proposed guidance law. The most widely used calculation method is R/Vc which is defined by

the relative range over the closing velocity. This method can give a good time-to-go estimate

in case the homing trajectory is near to the collision course. However, this method may not be

suitable for the impact angle control problem since the trajectory of impact angle controller is
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generally curved and far from the collision course. In [3], a time-to-go computation method

was suggested exclusively for the energy optimal terminal angle constrained law. In the case of

the proposed guidance with arbitrary gains, the method of [3] is inadequate because the homing

trajectory generated by the proposed law is different according to the guidance gain selections.

We therefore propose a more appropriate time-to-go calculation method based on the predicted

trajectory generated by the proposed guidance with arbitrary m and n values.

Let us consider the closed-form solution of ν in Eq. (2.7). This can be approximated to a

function of range η by substituting t ≈ η/VM , tf ≈ R0/VM and t0 = 0 into Eq. (2.7). It can

then be transformed to the angle error using the definition of ν = VMγ.

γ(η) = −C3(n+ 2)(R0 − η)n+1 − C4

(
m+ 2

n−m

)
(R0 − η)m+1 (2.11)

where η ∈ [0, R0] and

C3 =
1

(m− n)Rn+1
0

[(m+ 2)λ0 + γ0]

C4 =
1

Rm+1
0

[(n+ 2)λ0 + γ0] (2.12)

If the γ+λ angle is small, the length of the predicted trajectory from t0 to tf can be defined

in the initial LOS frame

S =

∫ R0

0

√
1 + [γ(η) + λ]2dη ≈ R0 +

1

2

∫ R0

0
γ2(η)dη + λ0

∫ R0

0
γ(η)dη +

1

2
λ20R0

(2.13)

By substituting Eq. (2.11) into the right-hand-side of Eq. (2.13) and manipulating the resulting

equations, we obtain

1

2

∫ R0

0
γ2(η)dη =

R0

(2n+ 3)(2m+ 3)(m+ n+ 3)

{[
(m+ 2)(n+ 2)λ0 +

1

2
γ0

]2

+

(
m+

3

2

)(
n+

3

2

)
γ20

}
∫ R0

0
γ(η)dη =−R0λ0 (2.14)

The total predicted trajectory length at t0 is then approximated as

S = R0

{
1 + p1

[(
p2λ0 +

1

2
γ0

)2

+ p3γ
2
0

]
− 1

2
λ20

}
(2.15)
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where

p1 = 1/ [(2m+ 3)(2n+ 3)(m+ n+ 3)]

p2 = (m+ 2)(n+ 2)

p3 = (m+ 3/2)(n+ 3/2) (2.16)

From Eq. (2.15), we know that S includes the length increment due to the trajectory curva-

ture with guidance gains.

Because the constant missile velocity is assumed, the terminal time, tf , can be calculated by

the length of the predicted curve over the velocity as

tf =
S

VM
=
R0

VM

{
1 + p1

[(
p2λ0 +

1

2
γ0

)2

+ p3γ
2
0

]
− 1

2
λ20

}
(2.17)

If tf in Eq. (2.17) is initialized at the each step of time, the terminal time can be replaced by

the time-to-go with λ = γ
f
− σ and γ = γM − γ

f
. Thus,

tgo =
R

VM

{
1 + p1

[(
p2(γf

− σ) +
1

2
(γM − γ

f
)

)2

+ p3(γM − γ
f
)2

]
− 1

2
(γ

f
− σ)2

}
(2.18)

Note that p1 converges to zero as the guidance gains increase, so the time-to-go can be approx-

imated to tgo ≈ R/VM when the guidance gains are large and small angle assumption is valid.

This tendency implies that the total homing trajectory of the proposed guidance law is near to

the collision course as the gains grow.

Based on the time-to-go polynomial function, we proposed the new guidance law which

satisfies the terminal angle constraint. In Section 4, the characteristic of the proposed law is

discussed through various numerical simulations.

3. POLYNOMIAL GUIDANCE FOR IMPACT-TIME-CONTROL

Using the similar approach proposed in Section 2, we derive a more generalized missile

guidance law that can intercept a stationary target at a desired flight time, where the desired

flight time is given before the missile is launched.

3.1. Problem Statement. Let us consider the two-dimensional engagement geometry as de-

picted in Fig. 2. As the previous engagement conditions in Section 2, we assume that VM is

constant and the autopilot lag is neglected. From Fig. 2, the nonlinear equations of motion w.r.t

the flight time, t, for this impact-time-control problem are given as

ẋ = VM cos γM , x(t0) = x0, x(td) = xf

ẏ = VM sin γM , y(t0) = y0 , y(td) = yf

˙γM = aM /VM , γM (t0) = γM0
(3.1)

where t0 and td are the initial and desired impact time, respectively. In Eq. (3.1), the terminal

constraints, x(td) = xf , y(td) = yf , are defined for the successful interception at the desired
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impact time; the missile positions at the desired impact time should be equal to the target

positions.

FIGURE 2. Homing Engagement for Impact-Time-Control

If the initial LOS angle, σ0, and flight path angle, γM , are small during the flight, the lin-

earized equations w.r.t the downrange, x, can be obtained as[
y′
γ′M

]
=

[
0 1
0 0

] [
y
γM

]
+

[
0
1

]
u (3.2)

where the prime ′ represents the derivative w.r.t x and the command is defined by u = aM /V
2
M .

The linearized equations can help to solve the impact-time-control problem easily. The initial

and final boundary conditions for this equation are given as

y(x0) = y0 , γM (x0) = γM0
, y(xf ) = yf (3.3)

Note that the final boundary condition, y(xf ) = yf , is required to hit the target at x = xf . The

terminal time constraints given in the nonlinear equations can be replaced by a path constraint

that the total length of the homing trajectory should be the same as the desired distance-to-go,

R̂∗
go; where R̂∗

go = VM (td − t0), and this path constraint is valid because VM is constant.

In addition to the final boundary condition of Eq. (3.3), therefore, we consider the following

trajectory length constraint to obtain the impact-time-control guidance law.

S =

∫ xf

x0

√
1 + (y′)2dη ≈

∫ xf

x0

1 +
1

2
γ2
M
(η)dη = R̂∗

go (3.4)

where S is the total length of homing trajectory from x0 to xf , and this approximation is valid

when the flight path angle is small.

In the impact time constrained problem, there are two terminal boundary conditions: zero

miss-distance of Eq. (3.3) and the terminal time constraint (i.e., the path constraint given by

Eq. (3.4). In order to derive a unique solution of the guidance law as in the previous chapter,
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we assume that the guidance command history for the impact-time-control is defined as the

following polynomial function with two unknown coefficients

u(x) = cnx
n
go + cm, n > 0 (3.5)

where n is an arbitrary positive constant. Note that, as shown in Eq. (3.5), the guidance

command profile is the function of downrange-to-go which has the similar property of the

time-to-go, and it includes two unknown coefficients, cn, cm; the coefficient cn in the first

term of the assumed polynomial function is considered to satisfy zero miss-distance, and the

second constant cm is for achieving the desired impact time (i.e., the path constraint).

Using the assumed guidance command history defined in Eq. (3.5), we derive a state feed-

back guidance law, that can satisfy the terminal constraints on the miss-distance and impact

time, in next sections.

3.2. Guidance Command for Target Interception.

3.2.1. State Feedback Command. To obtain the state feedback guidance law for successful

interception of the target, we should first determine the coefficient cn in the assumed guidance

command history. Let us substitute Eq. (3.5) into Eq. (3.2) and then integrate the resulting

equation with the initial conditions. After that, we can get

y(x) =
1

2
cmx

2 +
1

(n+ 1)(n+ 2)
cnx

n+2
go + cγx+ cy (3.6)

where cγ and cy are the constants of integration, which are defined as

cγ = γM0
− cmx0 +

1

(n+ 1)
cn(xf − x0)

n+1

cy = y0 −
1

2
cmx

2
0 −

1

(n+ 1)(n+ 2)
cn(xf − x0)

n+2 − cγx0 (3.7)

From Eq. (3.6) and Eq. (3.7), the missile lateral position at x = xf is

y(xf ) =
1

2
cmx

2
f + cγxf + cy

=
1

2
cmx̂

2
go + γM0 x̂go +

1

(n+ 2)
cnx̂

n+2
go + y0 (3.8)

where x̂2go = xf − x0. For the terminal zero miss-distance, the lateral position y(xf ) should

satisfy the final boundary condition, y(xf ) = yf . Using Eq. (3.8) and this boundary condition,

we can determine the coefficient cn to intercept the target at x = x0 as follows:

cn =
(n+ 2)

x̂n+2
go

(
ŷgo − γM0

x̂go − 1

2
cmx̂

2
go

)
(3.9)
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Hence, substituting Eq. (3.9) into Eq. (3.5) yields the guidance command for target inter-

ception at the initial x0 as

uITC (x0) = (n+ 2)
(ŷgo − γM0

x̂go)

x̂2go
− n

2
cm (3.10)

If the coefficient cn is initialized and recalculated at each step of x, the guidance command

given in Eq. (3.10) can be expressed in the form of the state feedback as

uITC (x) = up(x)− n

2
cm (3.11)

where

up(x) = (n+ 2)
(ygo − γMxgo)

x2go
(3.12)

and ygo = yf − y. Note that, the feedback command of Eq. (3.11) enables the missile to

hit the target even though the coefficient cm has any arbitrary constant. This result can be

demonstrated by obtaining the closed-form trajectory solutions.

3.2.2. Closed-form Solutions. The closed-form solutions of uITC can be obtained by solving

the following linear second-order ordinary differential equation (ODE), which is determined

by substituting Eq. (3.11) into Eq. (3.2).

y′′ +
(n+ 2)

(xf − x)
y′ − (n+ 2)

(xf − x)2
(yf − y) = −n

2
cm (3.13)

For convenience, the above second-order ODE is rewritten by using Y = yf − y and τ =
xf − x.

D2Y − (n+ 2)

τ
DY +

(n+ 2)

τ2
Y =

n

2
cm (3.14)

whereD is a differentiation operator w.r.t the independent variable τ . This equation is the same

form as the Euler-Cauchy equation, so we can easily find the solutions of Eq. (3.14)

The homogeneous solution to the ODE is

Yh(τ) = c1τ
n+2 − c2

1

(n+ 2)
τ (3.15)

and the particular solution to the ODE is

Yp(τ) = −1

2
cmτ

2 (3.16)
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Hence, from these equations, the general solutions of Eq. (3.13) can be obtained as

y(x) = yf − c1x
n+2
go + c2

1

(n+ 1)
xgo +

1

2
cmx

2
go

γM (x) = y′(x) = c1(n+ 2)xn+1
go − c2

1

(n+ 1)
− cmxgo

u(x) = γ′M (x) = −c1(n+ 2)(n+ 1)xngo + cm = cnx
n
go + cm (3.17)

where c1 and c2 are the constants of integration

c1 =
−1

(n+ 1)(n+ 2)x̂ngo
up(x0) +

1

2(n+ 1)x̂ngo
cm

c2 = −x̂goup(x0)− (n+ 1)γM0
− n

2
cmx̂go (3.18)

From Eq. (3.17), it can be seen that the final boundary condition given by Eq. (3.3) can

be always satisfied for an arbitrary cm, therefore, the feedback command uITC can achieve the

terminal zero miss-distance. It is also known that the missile flight path angle is dependent

on the constant coefficient cm; this result implies that the flight trajectory can be adjusted by

choosing the coefficient cm, therefore, we determine the appropriate coefficient cm to satisfy

the path constraint for the impact time control.

3.3. Guidance Command for Impact-Time-Control.

3.3.1. cm to Control Impact Time. In order to determine the coefficient cm that can satisfy the

path constraint, we first derive the total intercept trajectory length of uITC . From Eq. (3.4), the

total trajectory length estimated from the initial x0 to xf can be rewritten as

S =

∫ xf

x0

√
1 + γ2

M
(η)dη ≈ x̂go +

1

2

∫ xf

x0

γ2
M
(η)dη (3.19)

By substituting the solution γM of Eq. (3.17) into Eq. (3.19) and manipulating the resulting

equations, the integral term of the right-hand-side of Eq. (3.19) can be obtained as

1

2

∫ xf

x0

γ2
M
(η)dη =

n2

12(2n+ 3)(n+ 3)
x̂3goc

2
m +

n

2(n+ 2)(n+ 3)(2n+ 3)
x̂3goup(x0)cm

+
1

(2n+ 3)(n+ 2)
x̂3gou

2
p(x0) +

1

(n+ 2)
x̂2goγM0

up(x0) +
1

2
γ2
M
x̂go

(3.20)

Hence, from Eqs. (3.19) and (3.20), we have

S = p1x̂
3
goc

2
m + p2x̂

3
goup(x0)cm + R̂go

∣∣
cm=0

(3.21)
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where

p1 = n2/ [12(2n+ 3)(n+ 3)]

p2 = n/ [2(n+ 2)(n+ 3)(2n+ 3)]

R̂go

∣∣
cm=0

=
1

(2n+ 3)(n+ 2)
x̂3gou

2
p(x0) +

1

(n+ 2)
x̂2goγM0

up(x0) +

(
1 +

1

2
γ2
M0

)
x̂go

(3.22)

In Eq. (3.21), R̂go

∣∣
cm=0

is the length of the intercept trajectory guided by uITC with cm = 0;

that is, R̂go

∣∣
cm=0

is the estimated distance-to-go using up at the initial x0.

As mentioned in the previous section, S should be equal to the desired distance-to-go, R̂∗
go,

in order to make the missile hit the target at the designated impact time. Therefore, from Eqs.

(3.21) and (3.22), we can obtain the following equation for determining the coefficient cm

p1x̂
3
goc

2
m + p2x̂

3
goup(x0)cm − ε̂ = 0 (3.23)

where the distance-to-go error ε̂ = R̂∗
go − R̂go

∣∣
cm=0

, and this equation is a quadratic equation

in terms of cm. Hence, the solutions are given by

cm =
1

2

[
−p2
p1
up(x0)±

√(
p2
p1

)2

u2p(x0) +
4

p1x̂3go
ε̂

]

=
1

2

[
−p2
p1
up(x0)±

∣∣up(x0)∣∣
√(

p2
p1

)+ 4

p1u2p(x0)x̂
3
go

ε̂

]
(3.24)

The coefficient cm has two solutions, as shown in Eq. (3.24). If R̂go

∣∣
cm=0

= R̂∗
go, then cm

is not required for the impact time control; that is, cm when ε̂ = 0. From this condition, we

can choose the unique cm as follows

cm = − p2
2p1

up(x0)

[
1−

√
1 +

4p1
p22u

2
p(x0)x̂

3
go

ε̂

]
(3.25)

The solution of cm obtained in Eq. (3.25) can achieve the path constraint defined in Eq.

(3.4), so it can be used for intercepting the target at the desired impact time by employing

cm solution in uITC given by Eq. (3.11). However, since the cm solution contains the square

root term, the cm may have an imaginary solution when ε̂ < 0. To avoid this unacceptable

result, the desired impact time td should be selected to be larger than R̂go

∣∣
cm=0

/VM . This

requirement implies that the desired distance-to-go, R̂∗
go, should be larger than the total length

of the intercept trajectory generated by up(x).

3.3.2. Guidance Command for Practical Implementation. From Eq. (3.25), cm is calculated

using the initial engagement conditions, but this result contains an error due to the approxima-

tion of S. Therefore, in order to reduce the approximation error, the coefficient cm should be
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applied in a feedback form as follows:

cm = − 3

n(n+ 2)
up(x)

[
1−

√
1 +

4(n+ 2)2(n+ 3)(2n+ 3)

3u2p(x)x̂
3
go

ε

]
(3.26)

where

ε = R∗
go −Rgo

∣∣
cm=0

R∗
go = VM (td − t)

Rgo

∣∣
cm=0

=
1

(2n+ 3)(n+ 2)
x3gou

2
p(x) +

1

(n+ 2)
x2goγMup(x) +

(
1 +

1

2
γ2
M

)
xgo (3.27)

Note that cm given by Eq. (3.26) is no longer constant and is updated at each step of x.

Using Eqs. (3.11) and (3.26), we can finally obtain the guidance command to achieve the

terminal zero miss-distance as well as the impact time control as follows

uITC (x) = up(x)− n

2
cm

= up(x)

[
2n+ 7

2(n+ 2)
− 3

2(n+ 2)

√
1 +

4(n+ 2)2(n+ 3)(2n+ 3)

3u2p(x)x
3
go

ε

]
(3.28)

From the proposed guidance law in Eq. (3.28), it is seen that the uITC command is grad-

ually converted to the up command as the distance-to-go error, ε → 0. As discussed in the

previous subsection, the desired impact time should be larger than R̂go

∣∣
cm=0

/VM to avoid the

imaginary solution, so the distance-to-go error at the beginning of the homing phase is always

a positive value. Also, the distance-to-go error gradually decreases and finally reaches the

zero as the missile approaches the target. For the practical implementation without numeri-

cal instability, therefore, we determine the distance-to-go error by ε = max(ε, εmin), where

εmin = −3u2p(x)x
3
go/4(n+ 2)2(n+ 3)(2n+ 3). Figure 3 illustrates the guidance loop of the

proposed impact time controller which consists of two feedback loops: the inner up feedback

loop is to reduce the miss-distance and the outer feedback loop is to reduce the distance-to-go

error for achieving the impact time constraint.

To implement the proposed guidance law to a realistic missile system, the guidance com-

mand of Eq. (3.28) should be transformed to the missile acceleration with measurable units in

the time domain. Under the assumption that γM is small and xgo � ygo, the line-of-sight angle

and its derivative can be approximated as

σ ≈ ygo/xgo, dσ/dx ≈ (ygo − γMxgo)/x
2
go (3.29)

Using the definition of aM = V 2
Mu and the above equations, up(x) can be expressed as

ap(t) = V 2
Mup(x) = (n+ 2)VM (dx/dt)(dλ/dx) = (n+ 2)VM σ̇ (3.30)
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FIGURE 3. Guidance Loop of Impact Time Control Law

From Eq. (3.30), the missile acceleration command corresponding to Eq. (3.28) in the time

domain is derived as

aITC(t) = ap(t)

[
2n+ 7

2(n+ 2)
− 3

2(n+ 2)

√
1 +

4(n+ 2)2(n+ 3)(2n+ 3)

3a2p(t)R
3

V 4
Mε

]
(3.31)

where R is the relative range between the missile and target. The estimated range-to-go can

also be expressed in terms of the line-of-sight and the relative range as

Rgo

∣∣
cm=0

≈ R

[
1 +

1

2(2n+ 3)
(γM − σ)2

]
(3.32)

Note that, the ap command corresponding to up is the PNG law with navigation constant of

n + 2, therefore the proposed law given by Eq. (3.31) is converged to the PNG as ε → 0 and

R → 0. Examples of the proposed impact time control law for several values of n are shown

in Table 2. It is noted that the command with n = 1 is identical to the suboptimal guidance law

proposed in [19], and we can regard the proposed guidance as the more generalized impact-

time-control guidance law.

The characteristic and performance of the derived guidance law are demonstrated by per-

forming various numerical simulations, and the results are described in the next chapter.

TABLE 2. Examples of Proposed Impact-Time-Control Law

n Acceleration Command, aITC(t)

0.5 2.5V σ̇
(
8
5 − 3

5

√
1 + 350

3·(2.5VM σ̇)2R3V
4
Mε

)
1 3V σ̇

(
3
2 − 1

2

√
1 + 240

(3VM σ̇)2R3V
4
Mε

)
2 4V σ̇

(
11
8 − 3

8

√
1 + 2240

3·(4VM σ̇)2R3V
4
Mε

)
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4. NUMERICAL SIMULATIONS

To investigate the characteristics and performance of the proposed guidance laws, we per-

form several nonlinear simulations for the various gains and terminal conditions. In these

simulations, we assume that the missile has a constant speed of 250m/s, and is located at the

origin. The initial flight path angle is given by 30deg. The stationary target positions in the in-

ertial frame are (5000, 0)m, and all simulations are terminated when the missile-target relative

range is less than 0.5m.

4.1. Impact-Angle-Control Guidance. For the purpose of demonstrating the basic properties

for various guidance gains of the proposed impact-angle-control guidance law described in the

chapter 2, the nonlinear guidance simulations with m = 0, 0.5, 1.0 and n = m+1 are carried

out, where the desired terminal angle, −40deg is imposed. The homing trajectories, flight path

angles, and the required acceleration commands for the different gains are presented in Figs

4.(a)-(c).

(a) Homing Trajectories (b) Flight Path Angles

(c) Missile Accelerations

FIGURE 4. Simulation Results of Impact-Angle-Control Law with Various Gains

From the figure 4.(b), it can be seen that all guidance laws with different gains satisfy the

given terminal impact angle, −40deg. From the figures, it can be also known that, as the
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guidance gains increase, the larger acceleration command in the beginning phase is required

whereas the smaller acceleration is generated during the terminal phase of the engagement.

Therefore, the proposed impact-angle-controller with large guidance gains produces the higher

homing trajectory that converges rapidly to the collision course.

With m = 1.0, n = 2.0 gains, the nonlinear simulations for the desired impact angles,

γf = 0, −45, −90deg, are performed and the results are presented in Fig. 5. As shown in the

figure, the proposed guidance law can achieve the higher impact angle constraints, even though

the proposed law is derived using the linearized equations and some assumptions.

(a) Homing Trajectories (b) Flight Path Angles

(c) Missile Accelerations

FIGURE 5. Simulation Results for Various Desired Impact Angles

4.2. Impact-Time-Control Guidance. Using the same simulation conditions in the previ-

ous section, we investigate the characteristics and performance of the suggested impact-time-

control guidance law. Firstly, we carry out the nonlinear simulations with difference guidance

gains, n = 0.5, 1.0, 2.0, in which the desired impact time constraint td = 25sec is imposed.

Figs. 6.(a) to (c) present the simulation results: the homing trajectories, flight path angles,

and required acceleration commands resulting from the proposed impact time control law with

various gains. As shown in figures, the missile guided by PNG can intercept the target but it

cannot satisfy the given terminal time constraint. For all cases with various guidance gains,



322 TAE-HUN KIM

however, the proposed impact-time-control law enables the missile to hit the target at the des-

ignated impact time, 25sec, by increasing the homing trajectory length. From the figures, it

can be seen that the guidance with larger guidance gain increases the initial missile accelera-

tion command, whereas it decreases the required acceleration in the terminal homing phase. It

can also be seen that increasing the guidance gain results in the larger maximum acceleration

required and higher intercept trajectory. As compared with PNG law, the proposed guidance to

control the impact time demands more acceleration capability.

(a) Homing Trajectories (b) Flight Path Angles

(c) Missile Accelerations

FIGURE 6. Simulation Results of Impact-Time-Control Law with Various Gains

Next, we also perform the nonlinear simulations for the different impact times, td = 25, 30,

35sec, and n = 2.0, where the other parameters are the same as the previous one. The intercept

trajectories, flight path angles, and acceleration commands for all the cases are presented in

Figs. 7.(a) to (c). As shown in these figures, the results prove the capability of the proposed

law for satisfying the various impact time constraints, even though the proposed law is obtained

on the basis of the linearized equations and some assumptions.



POLYNOMIAL FUNCTION BASED GUIDANCE FOR IMPACT ANGLE AND TIME CONTROL 323

(a) Homing Trajectories (b) Flight Path Angles

(c) Missile Accelerations

FIGURE 7. Simulation Results for Various Desired Impact Times

5. CONCLUSION

In this paper, we proposed the polynomial function based guidance laws with terminal angle

and time constraints. To derive the guidance laws, we suggested the simple approach, where the

guidance command is assumed as a time-to-go and/or downrange-to-go polynomial function

and then the polynomial function coefficients are determined to satisfy the terminal constraints

given in homing problems. This approach is a very easy method to derive the homing guidance

law with terminal state constraints, as compared with other approaches such as optimal control

theory or nonlinear control design method. Unlike the conventional optimal control problem

for missiles guidance law design, this approach can also provide a more generalized optimal

solution of the guidance law with terminal constraints.

Using this approach, we proposed the two homing guidance laws; impact-angle-control law

and impact-time-control law. The derived guidance laws have arbitrary guidance gains, and

can be represented as the form of the optimal and/or suboptimal guidance law by choosing

the proper guidance gains. Since the proposed guidance laws include arbitrary gains as de-

sign parameters, we can also select the appropriate guidance command form considering the

homing engagement conditions and missiles capability. The performance and characteristics
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of the suggested guidance laws were investigated through the various nonlinear simulations

with different guidance gains and terminal constraints. In future studies, several factors such

as acceleration controller lag or aerodynamic model of missiles should be considered for the

practical implementation.
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