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ABSTRACT. Two major simultaneous attack strategies have been introduced, as one of cooper-

ative attack of multiple missiles. One strategy is an undesignated time attack, in which the mis-

siles communicate among themselves to synchronize the arrival times by reducing the mutual

differences of times-to-go of multiple missiles during the homing. The other is a designated

time attack, in which a common impact time is commanded to all members in advance, and

thereafter each missile tries to home on the target on time independently. For this individual

homing, Impact-Time-Control Guidance (ITCG) law is required. After introducing coopera-

tive proportional navigation (CPN) for the first strategy, this article presents a new closed-form

ITCG guidance solution for the second strategy. It is based on the linear formulation, employ-

ing base trajectories driven by PNG with various navigation constants. Nonlinear simulation

of several engagement situations demonstrates the performance and feasibility of the proposed

ITCG law.

1. INTRODUCTION

A group of well-organized low-cost multiple vehicles might be far superior to a single high-

technology and high-cost UAV in effectiveness. Tactical missile systems as well as UAVs

provide more capabilities when they are organized as a coordinated group than when they are

operated independently. Modern anti-ship missiles need to be able to penetrate the formidable

defensive systems of battleships such as anti-air defense missile systems and close-in weapon

system (CIWS). CIWS is a naval shipboard weapon system for detecting and destroying in-

coming anti-ship missiles and enemy aircraft at short range. These defensive weapons with

powerful fire capability and various strategies seriously intimidate the survivability of the con-

ventional anti-ship missiles. Hence, anti-ship missile developers have made great efforts to

develop a high-performance missile system with ultimate sea-skimming flight and terminal

evasive maneuvering capabilities despite a huge cost. On the other hand, cooperative attack

strategies have been studied to enhance survivability of the conventional ones. Here, a cooper-

ative attack means that multiple missiles attack a single target or multiple targets cooperatively

or, in a specific case, simultaneously [1, 2]. Clearly, it is difficult to defend a group of attack-

ers bursting into sight at the same time, even though each member is the conventional one in
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performance. So the simultaneous attack of multiple missiles is a cost-effective and efficient

cooperative attack strategy.

A simultaneous attack of a group of missiles against a single common target can be achieved

by two ways. The first approach is an undesignated time attack, in which the missiles try to

synchronize the arrival times communicating among themselves. In this case it does not matter

what the final flight time is. In other words, the missiles with larger times-to-go try to take

shortcuts, whereas others with shorter times-to-go take detours to delay the arrival times. The

second approach is a designated time attack, in which a common impact time is commanded

to all members in advance, and thereafter each missile tries to home on the target on time

independently. The first needs online data links throughout the engagement but the second

concept requires determination of a suitable common impact time before homing.

Despite a number of studies on guidance problems related to time-to-go [3-7], studies on

guidance laws to control impact time for a simultaneous attack are still rare. Proportional

navigation (PN) is a well-known homing guidance method in which the rate of turn of the

interceptor is made proportional with a navigation ratio N to the rate of turn of the line of sight

(LOS) between the interceptor and the target. The navigation constant N is a unit-less gain

chosen in the range from 3 to 5 [8]. Although PN with N = 3 is known to be energy-optimal,

an arbitraryN > 3 is also optimal if a time-varying weighting function is included into the cost

function of the linear quadratic energy-optimal problem [9, 10]. In general, the navigation ratio

is held fixed. In some cases, however, it can be considered as a control parameter to achieve a

desired terminal heading angle [11]. Although PN results in successful intercepts under a wide

range of engagement conditions, its control-efficiency is not optimal, in general, especially for

the case of maneuvering targets [12]. Augmented proportional navigation, a variant of PN, is

useful in cases in which target maneuvers are significant [8]. Biased proportional navigation is

also commonly used to compensate for target accelerations and sensor noises or to achieve a

desired attitude angle at impact [13]. Even if PN and its variants are already well known and

widely used, they are not directly applicable to many-to-one engagements.

For the undesignated time attack strategy, the homing guidance law named cooperative pro-

portional navigation (CPN) was introduced [14]. CPN implements the concept in which the

missiles synchronize the arrival times by reducing the mutual differences of times-to-go of

multiple missiles during the homing. It has the same structure as conventional PN except that

it has a time-varying navigation gain that is adjusted based on the onboard time-to-go and

the times-to-go of the other missiles. CPN uses the time-varying navigation gain as a control

parameter for reducing the variance of times-on-target of multiple missiles.

For the designated time attack strategy, a completely different type of guidance law is re-

quired from the designated time attack strategy. For this, an impact-time-control guidance law

(ITCG) for anti-ship missiles was developed in [1] and, as an extension of this study, a guidance

law to control both impact time and angle (ITACG) was presented in [15, 16]. In addition, the

other form of impact time guidance laws was introduced in [17], in which the law has a form

of a logical summation of the conventional PN law and an additional term of an impact-time

error multiplied by some gain.
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In this article, we introduce two representative guidance laws for a simultaneous attack of

multiple missiles. For comprehensive explanation, CPN is first introduced as a preliminary

study for the undesignated time attack, based on [14]. Then we propose a more general ITCG

law than that of the previous study in [1], which is more general in that this study employs base

trajectories driven by PNG with various navigation constants while the previous study did with

only one navigation constant.

2. BACKGROUND ON COOPERATIVE ATTACK STRATEGIES

2.1. Cooperative Attack Strategies. A cooperative attack in naval warfare means that multi-

ple missiles attack their common target cooperatively to achieve their common goals. Figs. 1

and 2 illustrate the simultaneous attack for two missiles. Note that the terminal impact times,

T1f and T2f , should be the same. Mutual on-line communication of maneuvering informa-

tion is of course required for accomplishing their common goal, simultaneous approach, in a

desirable manner. One can consider the case in which the desired or aiming impact-time for

multiple missiles is commonly specified beforehand. This paper names this specific situation

as a designated time attack. For example, Fig.1 represents the designated time attack for two

missiles. Note that current maneuvering of a missile does not have an effect on the maneu-

ver of the other missile at all and unique information shared with each other is a designated

impact-time, Td . Each missile tries to home on the given target in an individual manner.

Next let us consider the situation in which the desired or aiming impact-time for multiple

missiles is not specified in advance. Since the common impact-time is not specified, every

missile may try to reduce the difference of the expected impact-time from the others. The

undesignated time attack for two missiles is illustrated in Fig.2. Here the current maneuvering

of a missile does have an effect on the maneuvering of the other missile and thus information

is supposed to be exchanged with each other continuously during the homing.

FIGURE 1.

Designated time attack.

FIGURE 2.

Undesignated time attack.
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2.2. Time-To-Go Approximation. To find the time-to-go expression associated with an initial

range-to-go and a heading angle to LOS, we consider the inertial coordinate system shown in

Fig.3. The origin of the coordinate system lies on the initial position of missile. Here, the x

axis is directed to the target position and the y axis is normal to x axis. The governing equations

are given by

ẋ = VM cos γM , ẏ = VM sin γM , γ̇ = aM /VM (2.1)

where the dot denotes the differentiation with respect to time. Under the assumptions of small

γM angle, constant speed VM , and acceleration command aM normal to velocity, substituting

x/VM with time t leads to

y′ = γM , γ′
M

= aM /V
2
M (2.2)

where the prime represents the derivative with respect to the downrange x. Since the line-of-

sight angle σ can be approximated as −y/(xf − x), the PN command aM is

aM (x) = NVMσ
′ = − NV 2

M

(xf − x)2
y − NV 2

M

(xf − x)
y′ (2.3)

Substitute (2.3) into (2.2) to get

y′′ +
N

(xf − x)
y′ +

N

(xf − x)2
y = 0 (2.4)

where the initial conditions are given by y(0) = 0 and y′(0) = 0 . The solution of this Cauchy

equation can be easily obtained as

y(x) =
γM0

N − 1
(xf − x)

(
1−

(
1− x

xf

)N−1
)

(2.5)

Also differentiating (2.5) with respect to x yields

γM (x) = − γM0

N − 1

(
1−N

(
1− x

xf

)N−1
)

(2.6)

The length of the trajectory of (2.5), s, is given by

s = VM tf =

∫ xf

0

√
1 + y′2dx (2.7)

If y′(= γM ) is assumed to be small, (2.7) can be approximated as

VM tf ≈
∫ xf

0
(1 +

1

2
y′2)dx = xf

(
1 +

γ2
M0

2(2N − 1)

)
(2.8)

Thus,

tf ≈ xf
VM

(
1 +

γ2
M0

2(2N − 1)

)
(2.9)
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where tf can be regarded as a time-to-go estimation at initial time.

FIGURE 3. Guidance geometry for time-to-go calculation

2.3. Guidance law for Undesignated Time Attack.

2.3.1. Cooperative Proportional Navigation. Consider the homing guidance geometry of a

missile attacking a stationary target as shown in Fig.4. The target is modeled stationary. The

missile speed VM is assumed to be constant during the engagement. Let us suppose that the

missile uses well-known PN for homing as

aM = NVM σ̇ (2.10)

where N denotes the navigation constant and σ̇ the rate of line-of-sight angle, respectively.

Then a flight path angle is calculated from

˙γM = aM /VM = Nσ̇ (2.11)

The rate of the line-of-sight can be obtained as

σ̇ = −VM sin ρ

r
(2.12)

where r is a range-to-go and ρ = γM − σ . Thus the governing equations in this homing

problem can be expressed in terms of two states of r and ρ as

ṙ = −VM cos ρ (2.13)

ρ̇ = −(N − 1)VM sin ρ

r
(2.14)

Assume that ρ is small and define a time-to-go for straight flight along LOS as t̂goL = r/VM

, then the time-to-go of PN with navigation constant N can be approximated from (2.9) as

t̂go = t̂goL(1 + δ) (2.15)

where δ = ρ2/(2(2N − 1)) represents an increment of the time-to-go by the initial heading

angle ρ . If N remains constant for an entire homing, the time-to-go associated with normally

used N = 3 ∼ 5 is not much widely distributed. Note that the sensitivity of time-to-go to
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N decreases as N increases. Further, t̂go → t̂goL as N → ∞, so cannot be reduced less than

γ/VM even thoughN → ∞. Thus a time-invariant N may not be an effective design parameter

for timing control. For this reason, a time-varying gain beyond the normally used navigation

gain, especially even a negative gain, should be allowed.

FIGURE 4. Homing guidance geometry of i-th missile.

Now suppose that m missiles participate in a cooperative attack. Figure 5 shows the guid-

ance geometry on many-to-one engagement scenario. Here the speed VM of one missile is also

assumed to be constant during the engagement, but not necessarily to be the same as the speeds

of the other missiles. Although each missile has different initial conditions, their common aim

is to reach the target at the same instance. To achieve their common goal, conceptually, a mis-

sile far away from the target should try to home on the target as faster as possible and another

missile relatively near the target should delay the impact-time by making a detour intentionally.

Therefore, each missile is supposed to share its acceleration not only for a homing on the target

but also for timing control with the others by this cooperative strategy.

The problem being posed here is to find a time-varying navigation gain N i of PN as

ai = N iVMi σ̇i (2.16)

in order that a group of missiles participating in a cooperative attack can achieve a simultaneous

attack in a cooperative manner, where the subscript i represents the i-th missile. First, consider

a time-varying navigation gain N with a form of

N i(t) = N(1− Ωi(t)), i = 1, . . . ,m (2.17)

where N is navigation constant and Ωi(t) is a time-varying gain ratio. Then the problem of

finding a time-varying navigation gain N i is transformed to that of finding a time-varying gain

ratio Ωi(t). Next, let us define a relative time-to-go error as

ε̂i(t) =

⎛
⎝ 1

m− 1

m∑
j=1,j �=i

t̂goj(t)

⎞
⎠− t̂goi(t) (2.18)
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FIGURE 5. Guidance geometry on a many-to-one engagement scenario.

where, from (2.15),

t̂goi(t) ≈ ri(t)

VMi

(
1 +

ρ2i (t)

2(2N − 1)

)
(2.19)

The relative time-to-go error is the difference between a time-to-go of one missile and a

mean of times-to-go of the others. It can also be written as

ε̂i(t) =
m

m− 1
(tgo(t)− t̂goi(t)) (2.20)

where

tgo(t) =
1

m

m∑
j=1

t̂goj(t) (2.21)

which is the mean of times-to-go of all missiles. Then a variance,
∑2(t), of times-to-go of

multiple missiles is expressed as

∑2
(t) =

1

m

m∑
j=1

(tgo(t)− t̂goj(t))
2 (2.22)

Note that all missiles have the same times-to-go, i.e., they might home on the target si-

multaneously,if
∑2(t) at any time during the homing. So the variance can be regarded as a

performance indicator for a cooperative attack of multiple missiles employing PN with navi-

gation constant of N . For convenience this paper call it the -variance. It is a central idea of

this paper that a simultaneous attack can be achieved by means of decreasing the -variance by

the time-varying navigation gain N i(t) of (2.17) and further making N i(t) itself become N as



260 IN-SOO JEON

ri → 0 during the homing. If the time-varying navigation gain N i(t) of (2.19) is applied, the

governing equations can be written as, from (2.13) and (2.14),

ṙi(t) = −VMi cos ρi(t) (2.23)

ρ̇i(t) = −(N − 1)VMi sin ρi(t)

ri(t)
+
NVMi sin ρi(t)

ri(t)
Ωi(t) (2.24)

where the terminal conditions are given by ri(tft) = 0.

Now, we consider a homing guidance law, called CPN, in a very concise form as

Ωi(t) = Kri(t)ε̂i(t) (2.25)

Note that N i → N as ri(t) → 0 , since Ωi(t) → 0 as ri(t) → 0 . For a positive gain K,

the proposed law of (2.25) subject to (2.23) and (2.24) makes the N -variance
∑2(t) of (2.22)

decrease during the homing [14].

The CPN law makes a compromise with two independent purposes: the homing of one

missile via well-known conventional navigation constant, and the reduction of the N -variance

via trajectory reshaping by the gain ratio. Two purposes can be compromised from the fact that

the trajectory reshaping is effective only when the range-to-go is long enough, i.e., at initial

homing stage, but the homing takes precedence of trajectory reshaping near the target since

CPN becomes conventional PN as the range-to-go reduces from (2.25). Note that CPN can be

implemented without predetermination of the desired impact-time, and the law has a flexibility

to allow a missile group with different speeds respectively to carry out a cooperative attack.

And also CPN requires no additional information to normal PN for implementation except

time-to-go calculations of missiles and the range-to-go of own missile.

2.3.2. Numerical Simulation. Suppose that four (m = 4) missiles attack a single target equipped

with CIWS. The initial conditions of each missile are given in Table 1. Initial ranges-to-go are

13 km, 13 km, 12 km, and 12 km, respectively. Missile has a speed from 270 to 300 m/s,

respectively, as shown in Table 1.

TABLE 1. Engagement scenario for four missiles

Parameters Missile 1 Missile 2 Missile 3 Missile 4

Position (km) (1.74, 6.50) (0.20, 2.26) (1.18,−2.08) (2.16,−6.00)
Heading (deg) 0 15 30 45
Velocity (m/s) 270 280 290 300

Target Position (km) (13, 0) (13, 0) (13, 0) (13, 0)

To apply the proposed law to this scenario, the gain K is properly chosen asK = 40/(r0tgo0)
where the subscript 0 denotes an initial time and the superscript bar represents the mean value.

Initial times-to-go calculated by (3.16) are distributed from 40.3 to 49.5 sec as can be seen in

the second column of Table 2.
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TABLE 2. Simulation results (unit: sec)

t̂go0 tf (PN) tf (CPN)
Missile 1 49.5 49.5 48.3
Missile 2 47.3 47.3 46.7
Missile 3 41.9 41.9 47.5
Missile 4 40.3 40.3 47.5
tgo(mean) 44.7 44.7 47.5∑

(std.) 3.8 3.8 0.6

The mean value of times-to-go is 44.7 sec and the standard deviation is 3.8 sec. These values

are quite consistent with the simulation results of the third column of Table 2. Figure 6 shows

the flight trajectories of four missiles compared with PN-homing cases. CPN can guide four

missiles to home on the target nearly at the same time where the mean value of impact-times

is 47.5 sec and the standard deviation is only 0.6 sec as shown in the last column of Table 2.

Figure 7 depicts the navigation gains. Each missile tries to reduce cooperatively the difference

of times-to-go at early stage and then homes on the target with normal navigation constant of

N = 3.

FIGURE 6.

Cooperative attack by CPN FIGURE 7. Navigation gains.

Figure 8 shows the time history of the standard deviation of the difference of times-to-go.

One can see that the compromise between timing control and terminal homing occurs around

15 sec in this scenario. Figure 9 shows the time histories of acceleration commands of four

missiles

3. GUIDANCE LAW FOR DESIGNATED TIME ATTACK

3.1. Problem Statement. Let us consider a typical cooperative attack scenario. Although

each missile has a different missile-to-target range and an initial heading angle, their common
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FIGURE 8.

Standard deviation of the

difference of times-to-go.

FIGURE 9.

Acceleration commands.

aim is to reach the target simultaneously. Two assumptions are mentioned here for realistic

cooperative attack situations: The first one is that each of the missiles has a relatively similar

range-to-target with each other. The second is that an initial velocity vector of each missile

points towards not far away from the target. Under these assumptions, the discrepancies of the

impact times by PNG are not to be so conspicuous. Thus in this work it is assumed that the

designated impact time (Td) for cooperative attack is determined as

Td ≥ maxi{T̂i} for any i ∈ {1, 2, . . . , n} (3.1)

where T̂i is the estimated impact time of the i-th missile guided by PNG. Here the trajectory

generated by PNG is regarded as a base trajectory. It is reasonable to choose Td to be equal

or larger than the maximum of {T̂i’s} since a part of missiles may not satisfy the impact time

requirement otherwise. It can be easily understood that while one can always increases the

flight time by make a detour from the nominal path in principle, it is restricted to decrease the

path length too much for reducing the flight time.

Let us consider the homing guidance geometry of one of the missiles against the single target

as shown in Fig.4. The target is modelled stationary. And it is assumed that the missile speed

is constant through the engagement and the autopilot lag is negligible. In Fig.4, X , Y , and γM

denote the missile positions and flight path angle in the inertial reference frame, respectively.

The subscripts 0 and f represent the initial and final times, respectively. Note that the terminal

time is designated as Td in (3.1), then the governing equations in this homing problem are given

by

Ẋ = VM cos γM , X(0) = X0, X(Tf ) = Xf

Ẏ = VM sin γM , Y (0) = Y0, Y (Tf ) = Yf

γ̇M = aM /VM = (aB + aF )/VM , γM (0) = γM0 (3.2)
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where the terminal miss distance constraints are asX(Tf ) = Xf and T (Tf ) = Yf . The missile

is controlled by the acceleration command, aM , which is perpendicular to missile velocity.

Here the acceleration command is composed of two different commands: the first one is a

feedback command aB for reducing the miss-distance, and the second one is an additional

command aF for adjusting the impact time.

First, we will solve an optimal control problem in which the control effort

J =
1

2

∫ Tf

0

a2B
(Tf − t)m

dt (3.3)

is minimized subject to (3.2) under the assumption that the feed-forward command aF is con-

stant. And then, we will determine the additional command,aF , which makes the length of

homing route equal to the required range-to-go, i.e., the multiple of the missile speed and the

designated time-to-go.

3.2. Solution of Optimal Problem for Feedback Command. The linearized state equations

can be written as[
dy/dx
dγM /dx

]
=

[
0 1
0 0

] [
y
γM

]
+

[
0
1

]
uB +

[
0
1

]
uF (3.4)

where the downrange x is the independent parameter, and γM is assumed to be small. Each

variable is non-dimensionalized as

t = T/Tf , x = X/(VMTf ), y = Y/(VMTf ),

uB = aB/(VM /Tf ), uF = aF /(VM /Tf )

As a cost corresponding to (3.3), we consider the following cost as

J ′ =
1

2

∫ xf

x0

u2B
(xf − x)m

dx (3.5)

Boundary conditions of each state variables are also non-dimensionalized as

x(0) = X0/(VMTf ) = x0, x(1) = Xf/(VMTf ) = xf ,

y(x0) = Y0/(VMTf ) = y0, y(xf ) = Yf/(VMTf ) = yf ,

Since VM is constant, VMTf means the length of the flight trajectory at the final time, so

VMTf =

∫ Sf

0
dS =

∫ Sf

0

√
dX2 + dY 2

=

∫ Xf

X0

√
1 + (dY/dX)2dX =

∫ Xf

X0

√
1 + tan2 γMdX (3.6)

Dividing the both sides of (3.6) by VMTf and non-dimensionalizing X yields

1 =

∫ xf

x0

√
1 + tan2 γMdx (3.7)
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Therefore, the constraint on impact time under the assumption of the small γM angle can be

expressed with respect to downrange as

1 =

∫ xf

x0

√
1 + γ2

M
(x)dx (3.8)

γ2
M

in LHS is an approximation of tan2 γM representing the curvature of trajectory. This

relation is of importance since the given impact-time constraint is changed into the length

constraint of trajectory so that we can treat the intractable independent variable more easily in

an indirect manner.

This linear optimization problem can be solved analytically by applying the minimum prin-

ciple [10]. Let us write the Hamiltonian H for the problem as

H =
1

2

u2
B

(xf − x)m
+ λyγM + λγ(uB + uF ) (3.9)

where λy and λγ are the co-states. The optimality condition ∂H/∂uB = 0 gives the optimal

acceleration command

uB = −(xf − x)mλγ = −νy(xf − x)m+1 (3.10)

where νy is a constant to be determined to satisfy the final conditions. Integration of (3.4) leads

to

νy = −
(m+ 3)

(
yf − γM0

xf − uF

x2
f

2

)
xm+3
f

(3.11)

Hence, the feedback guidance command at the initial time can be expressed as a function of

uF :

uB = (m+ 3)
(yf − γM0

xf )

x2f
− m+ 3

2
uF (3.12)

The continuous-time feedback law is then obtained as

uB = uP − m+ 3

2
uF (3.13)

where uP ≡ (m + 3)(ygo − γMxgo)/x
2
go, xgo ≡ xf − x and ygo ≡ yf − y. Note that uP of

(3.13) is the linear approximation of PNG with the navigation constant of N = m+ 3.

3.3. Determination of the Additional Command. We start from the condition of (3.8), which

says that the range-to-go has to be equal to the multiple of the constant missile speed and the

time-to-go specified by Td , which is the difference between the designated impact time and

the current time. The heading angle, γM can be expressed as a polynomial of x from (3.4) and

(3.13)

γM (x) =
νy(xf − x)m+2

m+ 2
+ uF x+ γM0

− νyx
m+2
f

m+ 2
(3.14)
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Taylor series expansion of (3.8) over γM with the higher order terms neglected yields

tgo =

∫ xf

x0

√
1 + γ2M (η)dη ≈

∫ xf

x0

1 +
1

2
γ2
M
(η)dη (3.15)

where tgo is the designated time-to-go. Substituting (3.14) into (3.15) and integrating (3.15)

yields

u2F +
6uP uF

(m+ 3)(m+ 1)
+

12(m+ 4)(2m+ 5)

(m+ 1)2x3f

((
1 +

1

2
γ2M0

)
xf +

x2fγM0
uP

m+ 3

− x3fu
2
P

(2m+ 5)(m+ 3)

)
− 12(m+ 4)(2m+ 5)

(m+ 1)2
tgo
x3f

= 0 (3.16)

Letting uF be zero in (3.16) results in the useful approximation of the time-to-go of PNG,

t̂go, as follows:

t̂go =

(
1 +

1

2
γ2M0

)
xf +

1

m+ 3
x2fγM0

uP − 1

(2m+ 5)(m+ 3)
x3fu

2
P (3.17)

Then (3.16) is written as

u2
F
+

(
6uP

(m+ 3)(m+ 1)

)
uF +

12(m+ 4)(2m+ 5)

(m+ 1)2
(t̂go − tgo)

x3f
= 0 (3.18)

The solutions of (3.18) with respect to uF are given by

uF = − 3uP

(m+ 3)(m+ 1)
±
√(

3uP

(m+ 3)(m+ 1)

)2

+
12(m+ 4)(2m+ 5)

(m+ 1)2
εT
x3go

(3.19)

where εT is an impact time error, i.e., εT = tgo − t̂go. It is natural to choose the sign in

expression of (3.19) as to nullify when εT = 0, which means an achievement of the goal of

impact time control guidance. Recall that a zero uF implies PNG with navigation constant

(m+ 3) from (3.13). Thus we obtain the additional command as

uF =− 3uP

(m+ 3)(m+ 1)

+ s(uP )

√(
3uP

(m+ 3)(m+ 1)

)2

+
12(m+ 4)(2m+ 5)

(m+ 1)2
εT
x3go

(3.20)

where s(·) is kind of a sign function defined by

s(x) =

⎧⎪⎨
⎪⎩
+1 x > 0

±1 x = 0

−1 x < 0

(3.21)
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Combining (3.13) with (3.20) yields the acceleration command, which is the proposed ITCG

law based on the linear formulation, as follows:

uB + uF =
2m+ 9

2m+ 6
uP − s(uP )

1

2

√(
3uP

(m+ 3)

)2

+
12(m+ 4)(2m+ 5)

x3go
εT (3.22)

As the missile approaches the target, the control command may blow up as (3.22) implies

that the sensitivity of uF to the time-to-go error is inversely proportional to xgo . To circumvent

this undesirable property of ITCG, ITCG is switched to PNG once the calculated impact time

error is reduced below a certain threshold. A small impact time error means that the range-

to-go by PNG is approximately equal to that of ITCG. So conversion to PNG yields smooth

homing with acceptable impact time errors.

The expression on ITCG with physical units corresponding to (3.22) for nonlinear simulation

in the time domain is as follows:

aM = aB + aF =
2m+ 9

2
VM σ̇ − 1

2
s(σ̇)

√
(3VM σ̇)

2 +
12(m+ 4)(2m+ 5)V 5

M

R3
go

εT (3.23)

where εT = T go − T̂go and Rgo =
√
X2

go + Y 2
go. Employing (2.9), we can get a different

simple form of t̂go from (3.17) by setting the axis of Fig.3 to be consistent with the current

LOS in Fig.5. So from (2.9), the time-to-go estimate is given by

t̂go ≈
(
1 +

(γM − σ)2

2(2N + 1)

)
rgo (3.24)

where N = m + 3 , rgo =
√
x2go + y2go, and σ is a LOS angle. So the time-to-go estimation

with physical units can be expressed as

T̂go =
Rgo

VM

(
1 +

(γM − σ)2

2(2N + 1)

)
(3.25)

Since this approximation becomes accurate when the angle between the missile velocity and

LOS is reduced, the accuracy of estimation increases as a missile approaches to a target. If we

set N = 3, i.e. m = 0 in (3.23), then (3.23) is equal to the result given in [1] as

aM =
3

2
(3VM σ̇)−

1

2
s(σ̇)

√
(3VM σ̇)

2 +
240V 5

M

R3
go

εT (3.26)

In conclusion, we suggest (3.23) as a general ITCG law based on base trajectories driven by

PNG with navigation constant of N = m+ 3.

3.4. Numerical Examples. In order to investigate the characteristics of the proposed law,

nonlinear simulations are performed. The target is fixed by 10km from the missile. Initial

heading angle is 30deg and the speed of missile is 300m/e. In the case of PN with N = 3,

the impact time is observed in simulation to be about 34.28 sec as shown in Fig.10, which is
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almost the same as the approximated impact time (34.25 sec) of (3.25). Note that this is quite

different from the designated impact time of 40 sec.

In the case of ITCG, however, the impact time is observed to be about 40.0 sec, quite equal

to the desired impact time. The solid-line in Fig.5 depicts the trajectory by ITCG, producing

much longer route than PNG. Figure 10 also compares the heading angle profiles of PNG and

ITCG. The heading angle increases at the beginning and then decreases for ITCG, while it

decreases monotonically for PNG.

FIGURE 10. Trajectories by ITCG.

Figure 11 shows clearly that the impact-time error decreases from the early stage with ITCG

while it does not with PNG. As a result, it is observed in Fig.12 that ITCG employs more

control energy than PNG.

FIGURE 11.

Time-to-go and impact time

errors.

FIGURE 12.

Acceleration Commands.
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Figure 13-15 illustrate the case of ITCG by (3.23) and (3.25) based on PNG with N=2, 3,

4, 5, respectively. They all satisfy the impact time requirement. As N becomes larger, ITCG

employs more control energy at initial stage as expected from the PNG trajectories.

FIGURE 13.

Range-to-go

by ITCG (N=2 5).

FIGURE 14.

Trajectories

by ITCG (N=2 5).

FIGURE 15. Acceleration commands by ITCG (N=2 5).

Suppose that four missiles attack a single target with different initial conditions, respectively,

as shown in Table 1 (in Section 2). Each missile has the different speed, from 270 up to 300

m/s, respectively, and the designated impact time is determined as 50 sec, which is selected to

be slightly larger than the maximum of estimated impact times by PNG (N = 3). Figure 16

illustrates the cooperative attack trajectories of four missiles by PNG and shows large discrep-

ancies in the impact time of each missile. In this scenario, it is observed that the dispersion

of impact time is about 9.2 seconds. On the other hand, ITCG explicitly demonstrates that it

can drive the four missiles to hit the target nearly simultaneously at the desired impact time.
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In this example, ITCG reduces the impact time dispersion within about 0.1 seconds around the

designated value

FIGURE 16. Cooperative attack by ITCG.

4. CONCLUSION

This paper introduces two important simultaneous attack strategies of multiple missiles and

corresponding homing guidance laws. For comprehensive explanation, the CPN (cooperative

proportional navigation) guidance law is first introduced as an undesignated impact time strat-

egy, which can achieve a simultaneous attack by decreasing the t-go variance cooperatively till

the intercept. As main result in this article, the new ITCG (Impact-time-control guidance) law

is presented for the designated time attack strategy. This law guides a missile to the stationary

target at the predetermined designated-impact-time. As multiple missiles share their common

designated-impact-time at homing starting point at once, they can achieve cooperative simul-

taneous attack independently by the proposed law. The proposed law is regarded more general

form of ITCG than that of the previous study, in that it employs base trajectories driven by

PNG with various navigation constants while the previous study did with only one navigation

constant. The performance and the feasibility of the laws are demonstrated through nonlinear

simulations of various engagements.
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