DOI QR코드

DOI QR Code

Enhancing the performance of taxi application based on in-memory data grid technology

In-memory data grid 기술을 활용한 택시 애플리케이션 성능 향상 기법 연구

  • Choi, Chi-Hwan (Department of Bio-Information Technology, Chungbuk National University) ;
  • Kim, Jin-Hyuk (Department of Bigdata, Chungbuk National University) ;
  • Park, Min-Kyu (Department of BDC, Chungbuk National University) ;
  • Kwon, Kaaen (Department of BDC, Chungbuk National University) ;
  • Jung, Seung-Hyun (Department of Information Industrial Engineering, Chungbuk National University) ;
  • Nazareno, Franco (Department of Bio-Information Technology, Chungbuk National University) ;
  • Cho, Wan-Sup (Department of MIS / Business Data Convergence, Chungbuk National University)
  • 최치환 (충북대학교 바이오정보기술학과) ;
  • 김진혁 (충북대학교 빅데이터학과) ;
  • 박민규 (충북대학교 비즈니스데이터융합학과) ;
  • 권가은 (충북대학교 비즈니스데이터융합학과) ;
  • 정승현 (충북대학교 정보산업공학과) ;
  • 프란코 나자레노 (충북대학교 바이오정보기술학과) ;
  • 조완섭 (충북대학교 경영정보학과)
  • Received : 2015.08.08
  • Accepted : 2015.09.24
  • Published : 2015.09.30

Abstract

Recent studies in Big Data Analysis are showing promising results, utilizing the main memory for rapid data processing. In-memory computing technology can be highly advantageous when used with high-performing servers having tens of gigabytes of RAM with multi-core processors. The constraint in network in these infrastructure can be lessen by combining in-memory technology with distributed parallel processing. This paper discusses the research in the aforementioned concept applying to a test taxi hailing application without disregard to its underlying RDBMS structure. The application of IMDG technology in the application's backend API without restructuring the database schema yields 6 to 9 times increase in performance in data processing and throughput. Specifically, the change in throughput is very small even with increase in data load processing.

최근 빅데이터 분야에서 데이터를 메모리에 적재 후 빠르게 처리하는 인메모리 컴퓨팅 기술이 새롭게 부각되고 있다. 인메모리 컴퓨팅 기술은 과거 대용량 메모리와 다중 프로세서를 탑재한 고성능서버에 적용 가능하였지만, 점차 일반 컴퓨터를 초고속 네트워크로 연결하여 분산 병렬처리가 가능한 구조로 변화하고 있다. 본 논문은 In-memory data grid (IMDG) 기술을 택시 애플리케이션에 접목하여 기존의 데이터베이스의 변경 없이 성능을 향상시키는 기법을 제안한다. IMDG 기술을 적용한 경우 기존의 데이터베이스 기반의 웹서비스에 비해 처리속도와 처리량이 평균 6~9배정도 증가하며, 또한 부하량에 따른 처리량 변화의 폭이 매우 작음을 확인 하였다.

Keywords

References

  1. Arora, I. and Gupta, A. (2014). Improving performance of cloud based transactional applications using in-memory data grid. International Journal of Computer Applications, 107, 14-19.
  2. Bahl, B., Sharma, V. and Rajpal, N. (2012). Boosting geographic information system's performance using in-memory data grid. BVICAM's International Journal of Information Technology, 4, 468-473.
  3. Gade, K. (2010). A non-singular horizontal position representation. The Journal of Navigation, 63, 395-417. https://doi.org/10.1017/S0373463309990415
  4. Han, S., Jin, S. and Kim, Y. (2011). An architecture of a high performance distributed main memory database management system for massive data. The Korean Institute of Information Scientists and Engineers, 38, 141-148.
  5. Kim, T., Na, J. and Cho, W. (2006). PC-based hybrid grid computing for huge biological data processing. Journal of the Korean Data & Information Science Society, 17, 569-579.
  6. Kim, T., Na, J. and Cho, W. (2007). HyperDB - A high performance data analysis system based on grid computing technology. Journal of the Korean Data & Information Science Society, 18, 161-174.
  7. Kim, Y. and Cho, K. (2013). Big data and statistics. Journal of the Korean Data & Information Science Society, 24, 959-974. https://doi.org/10.7465/jkdi.2013.24.5.959
  8. Park, J., Lee, S., Kang, D. and Won, J. (2013). Hadoop and MapReduce. Journal of the Korean Data & Information Science Society, 24, 1013-1027. https://doi.org/10.7465/jkdi.2013.24.5.1013
  9. Park, M. (2015). A method to enhance the real-time processing performance of traffic big data by applying in-memory data grid technology, Master Thesis, Chungbuk National University, Cheongju.