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NORM CONVERGENT PARTIAL SUMS OF TAYLOR SERIES

Jongho Yang

Abstract. It is known that the partial sum of the Taylor series of an
holomorphic function of one complex variable converges in norm on Hp(D)
for 1 < p < ∞. In this paper, we consider various type of partial sums of
a holomorphic function of several variables which also converge in norm
on Hp(Bn) for 1 < p < ∞. For the partial sums in several variable cases,
some variables could be chosen slowly (fastly) relative to other variables.
We prove that in any cases the partial sum converges to the original
function, regardlessly how slowly (fastly) some variables are taken.

1. Introduction

Let Cn denote the Euclidean space of complex dimension n. The inner
product on Cn given by

〈z, w〉 := z1w1 + · · ·+ znwn,

where z = (z1, . . . , zn) and w = (w1, . . . , wn), so the associated norm is |z| =
√

〈z, z〉. The open unit ball in Cn is the set

Bn := {z ∈ C
n : |z| < 1}

and its boundary is the unit sphere

Sn := {z ∈ C
n : |z| = 1}.

In the case n = 1, we denote D in place of B1. For 0 < p < ∞, the Hardy space
Hp(Bn) consists of all holomorphic functions on Bn with

‖f‖p :=

(

sup
0<r<1

∫

Sn

|f(rζ)|p dσn(ζ)

)1/p

< ∞,

where dσn is the normalized surface measure on Sn. It is well known that each
space Hp(Bn) is a Banach space and contains polynomials as a dense subset
with respect to the above norm. Moreover we can use Talyor polynomials to
approximate the original function in the norm on Hp(D) when 1 < p < ∞. See
[2, Corollary 3].
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However there is only one trivial way in taking partial sum of Taylor series
for one variable analytic function. In this paper we consider various type of
convergent partial sums of Taylor series for a holomorphic function with several
variables. For a holomorphic function f on Bn, the Taylor series is given by

f(z) =
∑

α

cαz
α.

Here the summation is over all multi-indexes

α = (α1, . . . , αn)

with nonnegative integers αi and

zα := zα1
1 · · · zαn

n .

For a positive integer N we define the partial sum SN [f ] as

SN [f ](z) :=
∑

|α|≤N

cαz
α,

where |α| := α1 + · · ·+αn. And we consider more partial sums of Taylor series
in several variable case as

UN[f ](z) :=
∑

αi≤Ni

cαz
α, VN[f ](z) :=

∑

αi>Ni

cαz
α,

where N := (N1, . . . , Nn) ∈ Nn
0 . Here, Nn

0 is the product set of nonnegative
integer N0. And we call a sequence {N(k)}k in Nn

0 converges to ∞ if

lim
k→∞

N
(k)
i = ∞

for each i. In the convergence of N(k), each N
(k)
i need not be growth regularly.

Some N
(k)
i ’s are could increase slowly(fastly) relative to others. Here is our

main theorem.

Theorem 1.1. For 1 < p < ∞, we have

(1) SN [f ] converges to f in the norm on Hp(Bn);
(2) UN(k) [f ] converge to f in the norm on Hp(Bn);
(3) VN(k) [f ] converge to the zero function in the norm on Hp(Bn);

whenever N and a sequence {N(k)}k converges to ∞.

2. Proof of the theorem

We use the following lemma to prove the convergence of SN [f ] on Hp(Bn).
The proof is similar to [2, Proposition 1] but we include for completeness.

Lemma 2.1. Suppose X is a Banach space of holomorphic functions on Bn

with the properties that the polynomials are dense in X and SN is a bounded

operator on X for each N . Then ‖SN [f ] − f‖X → 0 for each f ∈ X if and

only if there is a positive constant C > 0 such that ‖SN‖ ≤ C for all N ≥ 1.
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Proof. First we assume that ‖SN [f ]− f‖X → 0 for each f ∈ X . Then we have
SN [f ] converges to f the norm on X . Since each SN is a bounded operator, by
applying the uniformly boundedness principle we have supN ‖SN‖ is bounded.

Conversely, fix f ∈ X and ǫ > 0. Since polynomials are dense in X , we can
find a polynomial g such that ‖f − g‖X < ǫ. So we have

‖SN [f ]− f‖X ≤ ‖SN [f − g]‖X + ‖SN [g]− g‖X + ‖g − f‖X

≤ C‖f − g‖X + ‖SN [g]− g‖X + ‖g − f‖X

≤ (C + 1)ǫ+ ‖g − SN [g]‖X .

Since SN [g] = g for large k, we prove that

lim
k→∞

‖SN [f ]− f‖X = 0.
�

In the proof of [2, Proposition 1], the author used the uniform boundedness
principle; for example, see the [1, Theorem 5.8]. However to apply the principle,
we have to know that each SN is a bounded operator. In the Hardy space it
is well-known that SN is a bounded operator, but we cannot guarantee for a
general Banach space of analytic function. It is an interesting problem whether
there exists a Banach space with analytic function in D such that the partial
sum converges but the operator norms ‖SN‖ are unbounded for some N .

We also use the well-known formulas
∫

Sn

f dσn =
1

2π

∫

Sn

∫ 2π

0

f(eiθζ) dθ dσn(ζ)(2.1)

and
∫

Sn

f dσn(2.2)

=

(

n− 1

m

)
∫

Bm

(1− |z|2)n−m−1

∫

Sn−m

f(z,
√

1− |z|2η) dσn−m(η) dvm(z)

for 1 ≤ m < n and f ∈ L1(Sn); we refer to [3, Lemma 1.10]. Now we prove the
Theorem 1.1(1).

Theorem 2.2. For 1 < p < ∞, the partial sum SN [f ] converges to f on

Hp(Bn).

Proof. Let f(z) =
∑

α cαz
α. If we let

fk(z) :=
∑

|α|=k

cαz
α

for each k ≥ 0, then the Talyor series of f can be expressed to the homogeneous
expansion as

f(z) =

∞
∑

k=0

fk(z).
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Then by the equation (2.1) we have

∫

Sn

∣

∣

∣

∣

∣

N
∑

k=0

fk(z)

∣

∣

∣

∣

∣

p

dσn(z) =

∫

Sn

∫

S1

∣

∣

∣

∣

∣

N
∑

k=0

fk(λz))

∣

∣

∣

∣

∣

p

dσ1(λ) dσn(z)

=

∫

Sn

∫

S1

∣

∣

∣

∣

∣

N
∑

k=0

λkfk(z)

∣

∣

∣

∣

∣

p

dσ1(λ) dσn(z),

where we used the homogeneous property of fk. Considered as the analytic
function in λ, we know that the partial sum converges. By [2, Proposition 1],
we have

≤ C

∫

Sn

∫

S1

∣

∣

∣

∣

∣

∞
∑

k=0

λkfk(z)

∣

∣

∣

∣

∣

p

dσ1(λ) dσn(z)

= C

∫

Sn

∫

S1

|f(λz)|p dσ1(λ) dσn(z)

= C

∫

Sn

|f(z)|
p
dσn(z).

Thus supN ‖SN‖ is bounded. By applying Lemma 2.1 we prove the theorem.
�

Now we consider the partial sum UN[f ] and VN[f ]. Recall that

UN[f ](z) :=
∑

αi≤Ni

cαz
α, VN[f ](z) :=

∑

αi>Ni

cαz
α

for N := (N1, . . . , Nn) ∈ Nn
0 . The operator UN is the partial sum of Taylor

series by collecting all polynomials with the power αi of z
α is not greater than

Ni for each i. We note that

UN = UN1e1 ◦ · · · ◦ UNnen
, VN = VN1e1 ◦ · · · ◦ VNnen

,

independently with the composition order. Here

e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 1),

be the standard unit vectors in Cn. Though

UNei
= I − VNei

for any positive integer N , in general

UN 6= I − VN,

where I is the identity operator.

Lemma 2.3. For 1 < p < ∞ and N ∈ Nn
0 , there exists a constant C depending

only n such that

‖UN[f ]‖p ≤ C‖f‖p.
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Proof. In case of n = 1, it was proved in [2, Theorem 2]. We use mathematical
induction argument. Suppose that n = m holds. By the equation (2.2) we have

∫

Sm+1

|U(N1,...,Nm+1)[f ]|
pdσm+1

= m

∫

B1

(1− |z|2)m−1

∫

Sm

∣

∣

∣
U(N1,...,Nm+1)[f ](z,

√

1− |z|2η)
∣

∣

∣

p

dσm(η) dv1(z).

For a fixed z ∈ B1, we let g(η) = UN1e1 [f ](z,
√

1− |z|2η) and consider g as
a function on Sm. Clearly g ∈ p(Sn) and V(N1,N2,...,Nm+1) = U(0,N2,...,Nm+1) ◦
UN1e1 ,

U(N1,N2,...,Nm+1)[f ](z,
√

1− |z|2η) = U(N2,...,Nm+1)[g](η).

By assumption, we get

‖U(N2,...,Nm+1)[g]‖p ≤ Cn‖g‖p.

Thus we have

m

∫

B1

(1 − |z|2)m−1

∫

Sm

∣

∣

∣
U(N1,...,Nm+1)[f ](z,

√

1− |z|2η)
∣

∣

∣

p

dσm(η) dv1(z)

≤ m

∫

B1

(1 − |z|2)m−1

∫

Sm

∣

∣

∣
UN1e1 [f ](z,

√

1− |z|2η)
∣

∣

∣

p

dσm(η) dv1(z)

=

∫

Sm+1

|UN1e1 [f ]|
p dσm+1.

We apply again the equation (2.2), we have
∫

Sm+1

|UN1e1 [f ]|
p dσm+1

=

∫

Bm

∫

S1

∣

∣

∣
UN1e1 [f ](

√

1− |z|2η, z)
∣

∣

∣

p

dσ1(η) dvm(z)

≤

∫

Bm

∫

S1

∣

∣

∣
f(
√

1− |z|2η, z)
∣

∣

∣

p

dσ1(η) dvm(z)

=

∫

Sm+1

|f |p dσm+1.
�

Lemma 2.4. For 1 < p < ∞ and N ∈ Nn
0 , there exists a constant C depending

only n such that

‖VN[f ]‖p ≤ C‖f‖p.

Proof. Let N = (N1, . . . , Nn). Since VNiei
= I − UNiei

, we get

VN = VN1e1 ◦ · · · ◦ VNnen

= (I − UN1e1) ◦ · · · ◦ (I − UNnen
).

By Lemma 2.3, we have UNiei
is uniformly bounded of N . So is I − UNiei

.
Since we compose n operators of uniformly bounded ones, we prove that VN is
a also uniformly bounded operators. �
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Now we are ready to prove Theorem 1.1(2) and (3).

Theorem 2.5. For f ∈ Hp(Bn) and 1 < p < ∞ and a sequence {N(k)}k in

Nn
0 which converges to ∞, we have

lim
k→∞

‖f − UN(k) [f ]‖p = 0

and

lim
k→∞

‖VN(k) [f ]‖p = 0.

Proof. Note that since the sequence {N(k)}k converges to ∞, for any polyno-
mial g, we have

lim
k→∞

UN(k) [g] = g, lim
k→∞

VN(k) [g] = 0.

Fix f ∈ p(Bn) and ǫ > 0. Since polynomials are dense in Hp(Bn), we can find
a polynomial g such that ‖f − g‖p < ǫ. It follows that

‖f − UN(k) [f ]‖p ≤ ‖f − g‖p + ‖g − UN(k) [g]‖p + ‖UN(k) [g − f ]‖p

≤ ‖f − g‖p + ‖g − UN(k) [g]‖p + C‖f − g‖p

≤ (C + 1)ǫ+ ‖g − UN(k) [g]‖p,

where we used Lemma 2.3 in the last inequality. Since UN(k) [g] = g for large
k, we prove that

lim
k→∞

‖f − UN(k) [f ]‖p = 0.

Similarly, by Lemma 2.4 we have

‖VN(k) [f ]‖p ≤ ‖VN(k) [f − g]‖p + ‖VN(k) [g]‖p

≤ C‖f − g‖p + ‖VN(k) [g]‖p.

Since ‖VN(k) [g]‖p = 0 for large k, we prove that

lim
k→∞

‖VN(k) [f ]‖p = 0.
�

Remark. We proved the convergence of various partial sums on the Hardy
spaces. However there are more classical analytic function space like the
Bergman space and Fock space. These spaces have the radial weighted func-
tions on symmetric domain. So by using polar coordinate integration, we can
also show that the Theorem 1.1 is also hold for the Bergman or Fock space.
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