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ON RELATIVE CLASS NUMBER AND

CONTINUED FRACTIONS

Debopam Chakraborty and Anupam Saikia

Abstract. The relative class number Hd(f) of a real quadratic field
K = Q(

√
m) of discriminant d is the ratio of class numbers of Of and

OK , where OK denotes the ring of integers of K and Of is the order of
conductor f given by Z+fOK . In a recent paper of A. Furness and E. A.
Parker the relative class number of Q(

√
m) has been investigated using

continued fraction in the special case when
√
m has a diagonal form.

Here, we extend their result and show that there exists a conductor f

of relative class number 1 when the continued fraction of
√
m is non-

diagonal of period 4 or 5. We also show that there exist infinitely many
real quadratic fields with any power of 2 as relative class number if there
are infinitely many Mersenne primes.

1. Introduction

A real quadratic field K is an extension Q(
√
m) = {a+ b

√
m | a, b ∈ Q} for

some square-free natural number m. The discriminant d of K is m if m ≡ 1
mod 4, otherwise d = 4m. In the former case, the ring OK of integers of K is

{a + b
1+

√
m

2 | a, b ∈ Z}, and in the latter case, OK = {a + b
√
m | a, b ∈ Z}.

By Dirichlet’s unit theorem, the units of OK can be written as ±ξim (i ∈ Z)
where ξm is called the fundamental unit. The relative class number of K for a
conductor f is the ratio Hd(f) of the class numbers of the order Of = Z+fOK

and OK . It was Dirichlet ([4]) who first obtained several interesting results
concerning relative class number of real quadratic fields. Gauss’s conjecture on
existence of infinitely many real quadratic fields of class number 1 motivated
Dirichlet to pose the question whether there are infinitely many real quadratic
fields of relative class number 1 (see [2], [4]). The question was successfully
addressed in [8], and a characterization in terms of the norm of the fundamental
unit was given in [1]. In [6], A. Furness and E. A. Parker studied relative class
number of Q(

√
m) using continued fraction in the special case when

√
m has

a diagonal form [see (3.6)]. The main goal of this paper is to extend their
approach and show that there exists a conductor f of relative class number
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1 when the continued fraction of
√
m is non-diagonal of period 4 or 5. The

following result of Dirichlet concerning the relative class number will be very
useful to us (see [2]).

Theorem 1.1 (Dirichlet). Let θ(f) be the smallest positive integer such that

ξ
θ(f)
m belong to Of and ψ(f) = f

∏

q|f

(

1 −
(

d
q

)

1
q

)

, where
(

d
q

)

denotes the “Kro-

necker residue symbol” of d modulo a prime q. Then the relative class number

for conductor f is given by

(1.1) Hd(f) =
ψ(f)

θ(f)
.

The Kronecker residue symbol
(

d
q

)

is the same as the Legendre symbol when

q is an odd prime. For q = 2 and d odd,
(

d
q

)

is 1 if d ≡ ±1 (mod 8) and −1

if d ≡ ±3 (mod 8). The relative class number is always an integer (see [2]),
hence θ(f) always divides ψ(f). We write the fundamental unit of OK as

ξm = α0 + β0
√
m, 2α0, 2β0 ∈ Z.

Note that ξ3m ∈ Z[
√
m] and when m 6≡ 5 (mod 8), α0 and β0 are integers (see

[7]). For the rest of the paper, we use the following notation:

(1.2) β̃0=β0, α̃0=α0 if ξm ∈ Z[
√
m], β̃0=2β0, α̃0=2α0 if ξm 6∈ Z[

√
m].

2. Continued fraction approach

In [6], the authors showed that the existence of relative class number 1 can
be related to the continued fraction of

√
m. Their results were for those m for

which
√
m has a continued fraction of diagonal form (see (3.6)). We are now

going to extend that approach and prove that whenever
√
m is represented by

a continued fraction of period 4 or 5, there exists a conductor f with relative
class number 1. When m is a square-free positive integer, it is well-known (e.g.,
see [9]) that the continued fraction of

√
m is periodic of the form

(2.1) n+
1

a1 +
1

···+ 1

ar+ 1
2n+ 1

a1+···

, where n = ⌊
√
m⌋, and ai = ar+1−i.

It is standard to denote it as

(2.2)
√
m = 〈n, a1, a2, . . . , ar, 2n〉.

The main result of this paper is the following theorem.

Theorem 2.1. Let m be a square-free positive integer such that
√
m is rep-

resented by a continued fraction of period 4 or 5. Then there exists a prime

divisor p of m such that the relative class number for p is 1. In other words,

Hd(p) = 1 where d is the discriminant of the number field Q(
√
m).
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In order to prove the above theorem, we will use Dirichlet’s formula (1.1)
which involves the fundamental unit ξm of the real quadratic field Q(

√
m). It is

well known that ξm is closely related to the continued fraction for
√
m. Hence

we will first look into properties of the continued fraction for
√
m.

3. Useful properties of the continued fraction of
√

m

It is convenient for us to write the continued fraction of
√
m in (2.2) as

(3.1)
√
m = 〈n, x〉 = n+ x−1, where x = 〈a1, a2, . . . , ar, 2n〉.

The i-th convergent of the continued fraction of x is defined as

hi

ki
= a1 +

1

a2 +
1

···+ 1
ai+1

.

It is easy to verify that the following recurrence relations are satisfied by hi
and ki:

h0 = a1, k0 = 1, h1 = 1 + a1a2, k1 = a2,

hi = aihi−1 + hi−2, ki = aiki−1 + ki−2,

hiki−1 − hi−1ki = (−1)i−1.

(3.2)

Conventionally, the explicit expressions in terms of the ais for the partial quo-
tients hi and ki are denoted by

(3.3) hi−1 = [a1, a2, a3, . . . , ai], ki−1 = [a2, a3, . . . , ai],

(e.g. see [3]),

h2 = [a1, a2, a3] = a1a2a3 + a1 + a3,

h3 = [a1, a2, a3, a4] = a1a2a3a4 + a3a4 + a1a4 + a1a2 + 1.
(3.4)

The Euler’s rule (see [3]) tells us that the expressions for partial quotients in
terms of the ais are unchanged when we take the ais in the reverse order, i.e.,

(3.5) [a1, a2, a3, . . . , ak] = [ak, ak−1, . . . , a2, a1].

We first prove the following lemma, which completely generalizes an ana-
logue in [6] for

√
m with a continued fraction of diagonal form, i.e.,

(3.6)
√
m = 〈n, a, . . . , a, 2n〉.

Lemma 3.1. Let
√
m = 〈n, a1, a2, . . . , ar, 2n〉 and let hi

ki

be the i-th convergent

of the purely periodic continued fraction x = 〈a1, a2, . . . , ar, 2n〉. Then we have

m = n2 +
kr

hr−1
.

In particular, hr−1 divides kr.
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Proof. Note that
√
m = 〈n, x〉 = n+ x−1. Now, x can also be written as

x = 〈a1, a2, . . . , ar, 2n, a1, a2, . . . , ar, 2n〉 = 〈a1, a2, . . . , ar, 2n, x〉.

Therefore, the (r+1)-th convergent of 〈a1, a2, . . . , ar, 2n, x〉 equals x. By the re-
currence relations given in (3.2), the (r+1)-th convergent of 〈a1, a2, . . . , ar, 2n,
x〉 is given by

xhr + hr−1

xkr + kr−1
.

As a consequence, we have

x =
xhr + hr−1

xkr + kr−1
,

and we obtain the following quadratic equation for x−1:

(3.7) x−2(hr−1) + x−1(hr − kr−1)− kr = 0.

Using Euler’s rule (3.5) for the partial quotients hi and ki of x and then using
the fact that ai = ar+1−i from (2.1), we obtain

(3.8) kr−1 = [a2, a3, . . . , ar] = [ar, ar−1, . . . , a2] = [a1, a2, . . . , ar−1] = hr−2.

On substituting in the quadratic equation (3.7), we obtain

x−2(hr−1) + x−1(hr − hr−2)− kr = 0.

In view of the recurrence relation (3.2), we find that hr = 2nhr−1 + hr−2.
Therefore, the quadratic equation for x−1 simplifies to

x−2(hr−1) + x(2nhr−1)− kr = 0,

and we obtain its solution

x−1 = −n+

√

n2 +
kr

hr−1
as x > 0.

Thus we find that
√
m = n + x−1 =

√

n2 + kr

hr−1
and hence

m = n2 +
kr

hr−1
.

As m is an integer, it now follows trivially that kr divides hr−1. �

Next, we obtain a bound on the coefficients appearing in the continued
fraction of

√
m. We will use this bound in the next section.

Proposition 3.2. Let
√
m = 〈n; a, b, . . .〉 be a continued fraction of period at

least 3. Then ab < 2n.
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Proof. Let [
√
m] = n so that m = n2 + t where t must be an integer satisfying

t ≤ 2n. Then

√
m = n+

√
m− n = n+

1
√
m+n

m−n2

= n+
1

2n+(
√
m−n)
t

, 0 <
√
m− n < 1.

Now, the next coefficient a in the continued fraction of
√
m is given by

(3.9) 2n = ta+ r1, 0 < r1 < t.

Note that r1 = 0 would imply that
√
m has continued fraction 〈n; a, 2n〉 of

period 2. Now,

√
m = n+

1
ta+(

√
m−(n−r1))

t

= n+
1

a+ 1
t(

√
m+(n−r1))

m−(n−r1)2

.

Now, the last denominator is

m− (n− r1)
2 = (m− n2) + 2nr1 − r21 = t+ (ta+ r1)r1 − r21 = t(1 + ar1),

and the numerator is

t(
√
m+ (n− r1)) = t(2n− r1 +

√
m− n).

Now, the next coefficient b in the continued fraction of
√
m is given by

(3.10) 2n− r1 = (1 + ar1)b+ r2, 0 ≤ r2 < 1 + ar1.

As r1 ≥ 1, we deduce from the last equality that 2n > ab. �

4. Proof of the theorem

We are now going to use the properties of the continued fraction of
√
m

deduced in §3 to prove theorem 2.1. It is well known (see [7]) that nhr−1 +
hr−2+hr−1

√
m is the fundamental unit ξm of Q(

√
m) except in the casem ≡ 5

(mod 8), when it equals ξ3m. Therefore, hr−1 is always a multiple of β̃0 (see
(1.2)).

If we can show that m does not divide hr−1 then there will be a prime factor
p of m which does not divide hr−1 as m is square-free. Such a prime p will

not divide β̃0 as well. For such a prime p, it is obvious that θ(p) will be p and
ψ(p) will also be p in Dirichlet’s formula (1.1). Therefore, such a prime p will
be a conductor of relative class number 1. In the first subsection below, we
will prove that if the continued fraction for

√
m has period 4 then m does not

divide hr−1, which ensures the existence of a prime conductor p of relative class
number 1. In the second subsection, we will do the same when the continued
fraction for

√
m has period 5.
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4.1. When
√

m has a continued fraction of period 4

Suppose
√
m has a continued fraction of period 4 (r = 3 in Lemma 3.1). As

outlined in §3 (2.1), the continued fraction of
√
m is necessarily of the form√

m = 〈n, a, b, a, 2n〉. It is clear from the preceding paragraph that theorem
2.1 in this case reduces to the following proposition.

Proposition 4.1. If
√
m = 〈n, a, b, a, 2n〉, then m does not divide h2.

Proof. We first consider the case when b > 3. It is enough to show that h2 ≤ n2

where n = ⌊√m⌋ as in (2.1). By (3.3) and (3.4) we have

h2 = [a, b, a] = a2b+ 2a,

h1 = [a, b] = ab+ 1 = k2,

k1 = [b] = b.

(4.1)

As h2k1 − k2h1 = −1 (by (3.2)), we deduce that

(4.2) k22 ≡ 1 (mod h2).

By Lemma 3.1, h2 divides k3. Using the recurrence relation (3.2) for k3, we
find that

2nk2 + k1 = k3 ≡ 0 (mod h2).

Multiplying both sides by k2 and using the relation (4.2), we obtain

2n ≡ 2nk22 ≡ −k2k1 ≡ −ab2 − b (mod h2).

Multiplying both sides by a, and using h2 = a2b+ 2a from (4.1), we obtain

2na ≡ −a2b2 − ab ≡ ab (mod h2).

By proposition 3.2, we have 2n > b and consequently there is a positive integer
l such that

2na = l(h2) + ab = la(ab+ 2) + ab.

Consequently, 2n ≥ ab+ b+ 2 and

4n2 > a2b2+4ab+4+2ab2+4b+b2 > a2b2+4ab ≥ 4(a2b+2a) = 4h2 (as b > 3).

Therefore, m > n2 > h2 and in particular m can not divide h2 when b > 3.
For b = 1, 2 or 3, we use the corresponding expression for h2 in terms of a,
and then find a suitable upper bound for a in terms of n. As noted in (3.9),
the coefficient a in the continued fraction for

√
m is given by

(4.3) 2n = ta+r1, where t = m−n2, and r1 > 0 (as the period of
√
m is 4).

But t is at least 2 as otherwise,

m = n2 + t = n2 + 1 ⇒
√
m = 〈n, 2n〉 (of period 1).

Consequently 2a < 2n from (4.3) and a ≤ n − 1. Observe also that n > 1 as√
m =

√
2 or

√
3 is of period strictly less than 4.

For b = 1, we now have

h2 = [a, 1, a] = a2 + 2 ≤ (n− 1)2 + 2 ≤ n2 < m as a ≤ n− 1.
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For b = 2, we have

h2 = [a, 2, a] = 2a2 + 2a ≤ 2(n− 1)2 + 2(n− 1) ≤ 2n2 < 2m.

If m divides h2, then that would mean h2 = m. But then m = h2 = 2a(a+ 1)
will not be square free as 4 divides 2a(a+ 1).

For b = 3, we have h2 = 3a2 + 2a and we need a sharper upper bound for a
than just n − 1. By (4.3), it amounts to finding a sharper lower bound for t.
We have

t =
2n− r1

a
>

2n− (r1 + r2)

1 + ar1
= b,

where the last equality above is due to (3.10). Thus t ≥ 4 and by (4.3)

a =
2n− r1

t
≤ 2n− 1

4
=
n

2
− 1

4
⇒ a ≤ n− 1

2

as a is an integer. Finally,

h2 = 3a2 + 2a ≤ 3

4
(n− 1)2 + (n− 1) ≤ n2 < m.

�

4.2. When
√

m has a continued fraction of period 5

Suppose
√
m has a continued fraction of period 5 (r = 4 in Lemma 3.1). As

outlined in §3 (2.1), it is clear that the continued fraction of
√
m is necessarily

of the form
√
m = 〈n, a, b, b, a, 2n〉. By the paragraph preceding §4.1, we need

only to show that m does not divide h3. Therefore, Theorem 2.1 in this case
reduces to the following proposition.

Proposition 4.2. If
√
m = 〈n, a, b, b, a, 2n〉, then m > h3.

Proof. Recall that
√
m =

√

n2 + kr

hr−1
when

√
m = 〈n, a1, a2, . . . , ar, 2n〉 where,

ai = ar+1−i, and
hi

ki

denotes the i-th convergent. Here, r = 4. By (3.3) and

(3.4), we have

h3 = [a, b, b, a] = (ab+ 1)2 + a2 = (a2b2 + a2 + ab) + (ab+ 1)

k3 = [b, b, a] = ab2 + a+ b

h2 = [a, b, b] = k3

k2 = [b, b] = b2 + 1

(4.4)

and we obtain

(4.5) k23 ≡ (−1)3 = −1 (mod h3) (as in (4.2)).

By Lemma 3.1 h2 divides k3. Using the recurrence relation (3.2) for k2, we find
that

2nk3 + k2 = k4 ≡ 0 (mod h3).

By (4.5), we obtain

2n ≡ −2nk23 ≡ k3k2 ≡ (ab2 + a+ b)(b2 + 1) (mod h3).
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Multiplying both sides by a and then using the expression for h3 in (4.4) we
obtain

2na ≡ (a2b2 + a2 + ab)(b2 + 1) ≡ −(ab+ 1)(b2 + 1) (mod h3).

Multiplying both sides by (1 + ab) then using the expression for h3 in (4.4) we
get

2na(ab+ 1) ≡ −(ab+ 1)2(b2 + 1) ≡ a2(b2 + 1) (mod h3),

and consequently,

2n(ab+ 1) ≡ a(b2 + 1) (mod h3) (as gcd(a, h3) = 1 from (4.4)).

Therefore, there is an integer l such that

(4.6) 2n(ab+ 1) = lh3 + a(b2 + 1) = l((ab+ 1)2 + a2) + a(b2 + 1).

By Proposition 3.2, 2n > ab and hence l must be a positive integer. We now
claim that l must be even from parity considerations in the last equality. When
a is even or a, b both are odd, it is clear from (4.1) that h3 is odd and then it
follows from (4.6) that l must be even. If a is odd and b is even, h3 is even but
a(b2 + 1) is odd which is ruled out by parity consideration in the first equality
of (4.6). Putting l ≥ 2 in (4.6), we obtain

2n ≥ 2(ab+ 1) +
2a2 + a(b2 + 1)

ab+ 1
,

and by squaring both sides, we get

4n2 ≥ 4(ab+ 1)2 + 4(2a2 + a(b2 + 1)) +
(2a2 + a(b2 + 1)

ab+ 1

)2

.

It follows that
4n2 > 4(ab+ 1)2 + 4a2 = 4.h3

and as a result
m > n2 > h3. �

The following result also comes out in the proof.

Corollary 4.3. There does not exist square free positive integer m such that√
m = 〈n, a, b, b, a, 2n〉 and a is odd and b is even.

5. Certain interesting implications

We conclude with two interesting observations that follow from our results.
The first observation is that we can easily construct an infinite family real
quadratic fields of class number 1. The second observation is that there are
infinitely many real quadratic fields with any given power of 2 as relative class
number provided there are infinitely many Mersenne primes. We explain these
two observations below.

If m is a square-free integer of the form n2 + n then it follows that
√
m =

〈n, 2, 2n〉. Here, hr−1 = 2 ⇒ θ(2) = 1 and ψ(2) = 2 as 2 always divides n2+n.
So, Hd(2) is 2. As n

2 + n can not be power of 2, it has an odd prime divisor p
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dividing m. As p does not divide 2 = hr−1, we must have Hd(p) = 1. Note that
there exist infinitely many square-free consecutive integers n and (n+1): if N
is a sufficiently large natural number and we sieve out all the integers between
2kN + 1 to (2k + 2)N which are divisible by squares of prime, we will be left
more than N square-free integers as

∑ 1

p2
< 0.4522474200 · · ·< 1

2

(see [5]) and hence at least two of those square-free integers will be consecu-
tive. Hence there exist infinitely many square free positive integers of the from
m = n2 + n giving relative class number 1 for any odd prime divisor of m as
conductor.

Now suppose m > 6 is an integer which is twice a Mersenne prime. In other
words, let m = 2(2p − 1) where p = 2k + 1 is a prime. Then, m is square free
and we have

m = (2k)2 − 2 = (n+1)2 − 2,
√
m = 〈n, 1, n− 1, 1, 2n〉, hr−1 = n+1 = 2k.

As ξm ∈ 2iOK for all 0 ≤ i ≤ k, θ(2i) = 1. Now,

ψ(2i) = 2i
(

1−
(d

p

)1

p

)(

1−
(d

2

)1

2

)

= 2i.

Therefore Hd(2
i) = 2i. If we assume that the number of Mersenne primes is

infinite, there will be infinitely many primes of the form 22k−1 − 1, and hence
we can demonstrate infinitely many real quadratic fields with any power of 2
as relative class number.
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