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RESULTS ON MEROMORPHIC FUNCTIONS SHARING

THREE VALUES WITH THEIR DIFFERENCE OPERATORS

Xiao-Min Li, Hong-Xun Yi, and Cong-Yun Kang

Abstract. Under the restriction of finite order, we prove two uniqueness
theorems of nonconstant meromorphic functions sharing three values with
their difference operators, which are counterparts of Theorem 2.1 in [6]
for a finite-order meromorphic function and its shift operator.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations of the Nevan-
linna theory of meromorphic functions as explained in [5], [10] and [16]. It will
be convenient to let E denote any set of positive real numbers of finite lin-
ear measure, not necessarily the same at each occurrence. For a nonconstant
meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of
h and by S(r, h) any quantity satisfying S(r, h) = o(T (r, h)), as r → ∞, r 6∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM, provided
that f and g have the same a-points with the same multiplicities. We say that
f and g share the value a IM, provided that f and g have the same a-points
ignoring multiplicities (cf. [16]). Throughout this paper, we denote by ρ(f) the
order of f (cf. [5], [10] and [16]). We also need the following two definitions:

Definition 1.1 ([15]). Let f be a nonconstant meromorphic function. We
define difference operators of f as

∆ηf(z) = f(z + η)− f(z) and ∆n
ηf(z) = ∆n−1

η (∆ηf(z)),

where η is a nonzero complex number, n ≥ 2 is a positive integer. If η = 1, we
denote ∆ηf(z) = ∆f(z).
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Remark 1.1. Definition 1.1 implies ∆n
ηf(z) =

∑n

j=0

(

n
j

)

(−1)n−jf(z + jη).

Definition 1.2 ([8]). Let k be a nonnegative integer or infinity. For any
a ∈ C ∪ {∞}, we denote by Ek(a, f) the set of all a-points of f, where an a-
point of multiplicity m is counted m times if m ≤ k, and k+1 times if m > k.
If Ek(a, f) = Ek(a, g), we say that f, g share the value a with weight k.

Remark 1.2. Definition 1.2 implies that if f, g share a value a with weight k,
then z0 is a zero of f − a with multiplicity m (≤ k) if and only if it is a zero
of g − a with multiplicity m (≤ k), and z0 is a zero of f − a with multiplicity
m (> k), if and only if it is a zero of g − a with multiplicity n (> k), where m
is not necessarily equal to n. Throughout this paper, we write f, g share (a, k)
to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k),
then f, g share (a, p) for all integer p, 0 ≤ p < k. Also we note that f, g share
a value a IM or CM if and only if f, g share (a, 0) or (a,∞), respectively.

Recently the value distribution theory of difference polynomials, Nevanlinna
characteristic of f(z + η), Nevanlinna theory for the difference operator and
the difference analogue of the lemma on the logarithmic derivative has been
established (cf. [2], [3], [4], [11] and [12]). Using these theories, uniqueness
questions of meromorphic functions sharing values with their shifts have been
recently treated as well (cf. [6], [7] and [19]). In this paper, we will consider
a uniqueness question of meromorphic functions of finite orders sharing three
values with their difference operators.

We recall the following result due to Heittokangas-Korhonen- Laine-Rieppo
[6]:

Theorem A ([6, Theorem 2.1]). Let f be a meromorphic function of finite

order, and let η be a nonzero complex number. If f(z) and f(z + η) share a1,
a2, a3 CM, where a1, a2 a3 are three distinct finite values, then f(z) = f(z+η)
for all z ∈ C.

Theorem A gives a sufficient condition for a finite-order meromorphic func-
tion and its shift to be identical. One may ask: What can be said about the
conclusion of Theorem A if we replace “f(z+η)” with ∆ηf(z)? In this direction,
we will prove the following theorem, which gives a counterpart of Theorem A
for finite-order meromorphic functions and their first order difference operators:

Theorem 1.1. Let f be a nonconstant meromorphic function of finite order,

and let η be a nonzero complex number. If f and ∆ηf share a1 ,a2 and a3 CM,

where a1, a2, a3 are three distinct values in the extended complex plane. Then

2f(z) = f(z + η) for all z ∈ C.

From Theorem 1.1 we get the following result:

Corollary 1.1. Let f be a nonconstant entire function of finite order, and let η
be a nonzero complex number. If f and ∆ηf share a1 and a2 CM, where a1 and

a2 are two distinct finite values in the complex plane. Then 2f(z) = f(z + η)
for all z ∈ C.
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Proceeding as in the proof of Theorem 1.1 in Section 3 of the present pa-
per, we can get the following more general result by Remark 2.1, Lemma 2.1,
Lemmas 2.6 and 2.7 in Section 2 of the present paper:

Theorem 1.2. Let f be a nonconstant meromorphic function of finite order,

and let η be a nonzero complex number. If f and ∆ηf share (a1, k1), (a2, k2)
and (a3, k3), where a1, a2, a3 are three distinct values in the extended complex

plane, and k1, k2, k3 are three positive integers satisfying

(1.1) k1 + k2 + k3 > k1k2k3 + 2.

Then 2f(z) = f(z + η) for all z ∈ C.

2. Some lemmas

In this section, we will give the following lemmas which play an important
role in proving the main results of the present paper:

Lemma 2.1 ([13, Lemma 2.2]). Let f and g be two nonconstant rational func-

tions that share (0, k1), (1, k2) and (∞, k3), where k1, k2, k3 are three positive

integers satisfying (1.1). Then f = g.

Lemma 2.2 ([17, Lemma 1]). Let f and g be two distinct nonconstant mero-

morphic functions sharing 0, 1 and ∞ CM. Then there exist two entire functions

α and β such that

(2.1) f =
eα − 1

eβ − 1
, g =

e−α − 1

e−β − 1
,

where eβ 6≡ 1, eα 6≡ 1 and eβ−α 6≡ 1, and T (r, g) + T (r, eα) + T (r, eβ) =
O(T (r, f)), as r 6∈ E and r → ∞, where E ⊂ R+ is a subset which has a finite

linear measure.

Lemma 2.3 ([1]). Let f and g be two distinct nonconstant meromorphic func-

tions such that f and g share 0, 1, ∞ CM. If f is a Möbius transformation

of g, then f and g assume one of the following six relations: (i) fg = 1; (ii)
(f − 1)(g − 1) = 1; (iii) f + g = 1; (iv) f = cg; (v) f − 1 = c(g − 1); (vi)
[(c−1)f+1][(c−1)g−c] = −c; where c is a complex number satisfying c 6= 0, 1.

Lemma 2.4 ([16, Theorem 1.62]). Let f1, f2, . . . , fn be nonconstant mero-

morphic functions, and let fn+1 6≡ 0 be a meromorphic function such that
∑n+1

j=1 fj = 1. If there exists a subset I ⊆ R+ satisfying mesI = ∞ such that

n+1
∑

i=1

N

(

r,
1

fi

)

+ n
n+1
∑

i=1,i6=j

N(r, fi) < (λ+ o(1))T (r, fj), j = 1, 2, . . . , n,

as r → ∞ and r ∈ I, where λ < 1. Then fn+1 = 1.
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Lemma 2.5 ([2, Corollary 2.5]). Let f be a nonconstant meromorphic function

of finite order, and let η be a nonzero complex number. Then for any positive

number ε, we have

m

(

r,
f(z + η)

f(z)

)

+m

(

r,
f(z)

f(z + η)

)

= O(rρ(f)−1+ε).

Lemma 2.6 ([9, Lemma 6]). Let f and g be two distinct nonconstant mero-

morphic functions such that f and g share 0, 1, ∞ IM. If f is a quasi-Möbius

transformation of g, then f and g assume one of the following six relations:
(i) f · g = 1; (ii) (f − 1)(g − 1) = 1;
(iii) f + g = 1; (iv) f = cg;
(v) f − 1 = c(g − 1), (vi) [(c− 1)f + 1] · [(c− 1)g − c] = −c;

where c 6≡ 0, 1,∞ is a small function of f and g.

Lemma 2.7 ([18, Lemma 2.6]). Let f and g be two distinct nonconstant mero-

morphic functions that share (0, k1), (1, k2) and (∞, k3), where k1, k2 and k3
are three positive integers satisfying (1.1). Then

(i) N (2(r,
1
f
) +N (2(r,

1
f−1 ) +N (2(r, f) = S(r, f);

(ii) N (2(r,
1
g
) +N (2(r,

1
g−1 ) +N (2(r, g) = S(r, f).

Remark 2.1. Suppose that f and g in Lemma 2.7 are distinct transcendental
meromorphic functions of finite order. Then, from the proof of Lemma 2.6 [18]
we can find that

(2.2) N (2(r,
1

f
) +N (2(r,

1

f − 1
) +N (2(r, f) = O(log r)

and

(2.3) N (2(r,
1

f
) +N (2(r,

1

f − 1
) +N (2(r, f) = O(log r)

as r → ∞. Therefore, in the same manner as in the proof of Lemma 1 [17] we
have from (2.2) and (2.3) that

(2.4) f =
h1e

α̂ − 1

h2eβ̂ − 1
, g =

h−1
1 e−α̂ − 1

h−1
2 e−β̂ − 1

,

where h1 and h2 are two non-vanishing rational functions, α̂ and β̂ are non-

constant polynomials such that h1e
α̂ 6≡ 1, h2e

β̂ 6≡ 1 and eβ̂−α̂ 6≡ h1

h2
, and

T (r, g) + T (r, eα̂) + T (r, eβ̂) = O(T (r, f)) as r → ∞.

3. Proof of theorems

Proof of Theorem 1.1. First of all, we set

(3.1) g = ∆ηf.

Suppose that f and g are rational functions. Then, by Lemma 2.1 and the
assumptions of Theorem 1.1 we have f = g. Combining this with (3.1), we get
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the conclusion of Theorem 1.1. Next we suppose that f and g are transcen-
dental meromorphic functions such that f 6≡ g. We consider the following two
cases.

Case 1. Suppose that g is a Möbius transformation of f. We discuss the
following two subcases.

Subcase 1.1. Suppose that one of a1, a2 and a3 is ∞, say a3 = ∞. Without
loss of generality, we let a1 = 0, a2 = 1 and a3 = ∞. From Lemma 2.2 we have
(2.1). By Lemma 2.3 we know that f, g satisfy one of the six relations (i)-(vi)
of Lemma 2.3.

Suppose that f, g satisfy one of the relations (i), (ii) and (vi) of Lemma 2.3.
Then ∞ is a Picard exceptional value of f and g, and so f and g are entire
functions. In fact, if f and g satisfy the relation (i) of Lemma 2.3, then

(3.2) f(z) = eγ1(z), f(z + η)− f(z) = e−γ1(z)

for all z ∈ C, where γ1(z) is a nonconstant polynomial. By (3.2) we deduce
eγ1(z)+γ1(z+η) − e2γ1(z) = 1 for all z ∈ C, this together with Lemma 2.4 implies
a contradiction. If f and g satisfy (ii) of Lemma 2.3, then

(3.3) f(z) = 1 + eγ2(z), f(z + η)− f(z) = 1 + e−γ2(z)

for all z ∈ C, where γ2(z) is a nonconstant polynomial. From (3.3) we deduce

eγ2(z+η) − eγ2(z) − e−γ2(z) = 1

for all z ∈ C, which together with Lemma 2.4 yields a contradiction. Similarly,
if f and g satisfy (vi) of Lemma 2.3, we also get a contradiction.

Suppose that f and g satisfy (iii) of Lemma 2.3. Then 0, 1 are Picard
exceptional values of f and g. Hence f = (f − 1)eγ3 , where γ3 is a noncon-
stant polynomial. Combining this with (3.1) and (iii) of Lemma 2.3, we have
eγ3(z+η)/(eγ3(z+η) − 1) = 1 for all z ∈ C, which is impossible.

Suppose that f, g satisfy (iv) of Lemma 2.3. Then 1 and c are Picard
exceptional values of f. Hence f − 1 = (f − c)eγ4 , where γ4 is a nonconstant
polynomial. Hence f = (1 − ceγ4)/(1 − eγ4), this together with (3.1) and (iv)
of Lemma 2.3 gives

(3.4) c2eγ4(z) + (1 + c− c2)eγ4(z+η) − ceγ4(z)+γ4(z+η) = 1

for all z ∈ C. From (3.4) and Lemma 2.4 we can get a contradiction.
Suppose that f, g satisfy (v) of Lemma 2.3. By substituting (2.1) into (v)

of Lemma 2.3 we can get eα = c, and so it follows from (2.1), (3.1) and (v) of
Lemma 2.3 that

(3.5) ceβ(z+η)−β(z) − eβ(z+η) = c− 1

for all z ∈ C. The only possibly constant term of the left side of (3.5) is
ceβ(z+η)−β(z). This together with Lemma 2.4 and c 6= 1 gives eβ(z+η)−β(z) =
c− 1, and so eβ(z+η) = 0 for all z ∈ C, which is impossible.
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Subcase 1.2. Suppose that none of a1, a2 and a3 is ∞. We set

(3.6) H(z) =
f(z)− a1
f(z)− a3

·
a2 − a3
a2 − a1

, K(z) =
∆ηf(z)− a1
∆ηf(z)− a3

·
a2 − a3
a2 − a1

.

From (3.6) and the condition that f and ∆ηf share a1, a2, a3 CM we know
that H and K share 0, 1, ∞ CM. From (3.1) and f 6≡ g we deduce H 6≡ K.
Hence we get from Lemma 2.2 that

(3.7) H =
eα1 − 1

eβ1 − 1
, K =

e−α1 − 1

e−β1 − 1
,

where α1 and β1 are polynomials such that eβ1 6≡ 1, eα1 6≡ 1, eβ1−α1 6≡ 1 and
T (r,K) + T (r, eα1) + T (r, eβ1) = O(T (r, f)) as r → ∞. By the condition that
∆ηf is a Möbius transformation of f we know that K is a Möbius transforma-
tion of H. By Lemma 2.3 we consider the following six subcases.

Subcase 1.2.1. Suppose that H and K satisfy HK = 1. Then

(3.8) H(z) = eγ5(z) and K(z) = e−γ5(z),

where γ5 is a nonconstant polynomial. From the left equalities of (3.6) and
(3.8) we get

(3.9) f(z) =
a3a4e

γ5(z) − a1
a4eγ5(z) − 1

for all z ∈ C, where

(3.10) a4 =
a2 − a1
a2 − a3

.

From (3.9) we get

(3.11) f(z + η)− f(z) =
a4(a1 − a3)(e

γ5(z+η) − eγ5(z))

(a4eγ5(z) − 1)(a4eγ5(z+η) − 1)

for all z ∈ C. Meanwhile, from (3.11) and the right equalities of (3.6) and (3.8)
we get

(3.12)
f(z + η)− f(z)− a1
f(z + η)− f(z)− a3

= a4e
−γ5(z)

for all z ∈ C. By substituting (3.11) into (3.12) we get
(3.13)

(a3a4 − 2a1a4 − a3a
3
4)e

γ5(z)+γ5(z+η) − a3a4e
2γ5(z) + a1a

2
4e

2γ5(z)+γ5(z+η)

+ a1a
2
4e

γ5(z+η) + (2a3a
2
4 − a1a

2
4)e

γ5(z) = a3a4

for all z ∈ C. By rewriting (3.13) we get

(3.14) b1(z)e
3γ5(z) + b2(z)e

2γ5(z) + b3(z)e
γ5(z) = a3a4

for all z ∈ C, where

(3.15) b1(z) = a1a
2
4e

γ5(z+η)−γ5(z),
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(3.16) b2(z) = (a3a4 − 2a1a4 − a3a
3
4)e

γ5(z+η)−γ5(z) − a3a4

and

(3.17) b3(z) = a1a
2
4e

γ5(z+η)−γ5(z) + 2a3a
2
4 − a1a

2
4

for all z ∈ C. From (3.15)-(3.17) and Lemma 2.5 we get

(3.18) T (r, bj(z)) = O(rdeg(γ5)−1+ε), 1 ≤ j ≤ 3

as r → ∞, where ε is an arbitrary positive number. Suppose that b1 6≡ 0.
Applying Valiron-Mokhonko identity (cf. [14]) to (3.14) and (3.18), we get

T (r, b1(z)e
3γ5(z)) = 3T (r, eγ5(z)) +O(rdeg(γ5)−1+ε)

= T (r, a3a4 − b3(z)e
γ5(z) − b2(z)e

2γ5(z))

≤ 2T (r, eγ5(z)) +O(rdeg(γ5)−1+ε),

which implies that

T (r, eγ5(z)) = O(rdeg(γ5)−1+ε).

But this means that γ5(z) is a constant, which is impossible. Hence b1 = 0.
Similarly b2 = b3 = 0. Combining this with (3.14) and (3.15), we get a1a

2
4 =

a3a4 = 0. From (3.10) we get a4 6= 0, 1. Hence a1 = a3 = 0, which is impossible.

Subcase 1.2.2. Suppose that H and K satisfy (H − 1)(K − 1) = 1. Then
∞ and 1 are Picard exceptional values. Hence

(3.19) H(z) = 1 + eγ6(z), K(z) = 1 + e−γ6(z),

where γ6 is a nonconstant polynomial. From (3.10) and the left equalities of
(3.6) and (3.19) we get

(3.20) f(z) =
(a1 − a3a4)− a3a4e

γ6(z)

(1− a4)− a4eγ6(z)
.

From (3.20) we get
(3.21)

f(z + η)− f(z) =
a4(a1 − a3)[e

γ6(z+η) − eγ6(z)]

(1− a4)2 + a4(a4 − 1)[eγ6(z) + eγ6(z+η)] + a24e
γ6(z)+γ6(z+η)

.

From (3.10), Definition 1.2 and the right equalities of (3.6) and (3.19) we get

(3.22) f(z + η)− f(z) =
(a1 − a3a4)− a3a4e

−γ6(z)

(1 − a4)− a4e−γ6(z)
.

From (3.21) and (3.22) we get

(3.23) c1e
2γ6(z)+γ6(z+η)+c2e

γ6(z)+γ6(z+η)+c3e
2γ6(z)+c4e

γ6(z+η)+c5e
γ6(z) = c6

for all z ∈ C, where

(3.24) c1 = c4 = (a3a4 − a1)a
2
4,

(3.25) c2 = 2a1a4 − a3a4 − 2a1a
2
4 + 2a3a

3
4,
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(3.26) c3 = a3a4(a4 − 1)2,

(3.27) c5 = (a1 + a3a4 − 2a3)a
2
4

and

(3.28) c6 = −a3a4(a4 − 1)2.

We note that γ6(z) and γ6(z + η) are two nonconstant polynomials that have
the same highest terms. Hence the non-vanishing terms on the left side of (3.23)
must be nonconstant terms. This together with Lemma 2.4 and a4 6= 0, 1 gives
c6 = 0, and so a3 = 0. Hence (3.23) can be rewritten as

(3.29) a4e
2γ6(z)+γ6(z+η) + 2(a4 − 1)eγ6(z)+γ6(z+η) + a4e

γ6(z+η) − a4e
γ6(z) = 0

for all z ∈ C. Next in the same manner as in Subcase 1.2.1 we get from (3.29)
that a4 = 0 and a4 = 1, which is impossible.

Subcase 1.2.3. Suppose that H and K satisfy H +K = 1. Then 0, 1 are
Picard exceptional values of H and K. Hence

(3.30)
H

H − 1
= eγ7 ,

where γ7 is a nonconstant polynomial. Substituting (3.6), (3.10) into H+K =
1, we get

(3.31)
f(z + η)− f(z)− a1
f(z + η)− f(z)− a3

+
f(z)− a1
f(z)− a3

= a4.

From (3.10), (3.30) and the left equality of (3.6) we get

(3.32) f(z) =
a1 + (a3a4 − a1)e

γ7(z)

1 + (a4 − 1)eγ7(z)

for all z ∈ C. From (3.32) we get

(3.33)
f(z)− a1
f(z)− a3

=
[(a3a4 − 1)− a1(a4 − 1)]eγ7(z)

(a1 − a3) + (a3 − 1)eγ7(z)

and
(3.34)

f(z + η)− f(z) =
[a1(a4 − 1)− (a3a4 − 1)][eγ7(z) − eγ7(z+η)]

1 + (a4 − 1)[eγ7(z) + eγ7(z+η)] + (a4 − 1)2eγ7(z)+γ7(z+η)

for all z ∈ C. By substituting (3.33), (3.34) into (3.31) we get
(3.35)

d1e
2γ7(z)+γ7(z+η) + d2e

γ7(z)+γ7(z+η) + d3e
2γ7(z) + d4e

γ7(z+η) + d5e
γ7(z) = d6

for all z ∈ C, where

(3.36) d1 = (a4 − 1)2(a1 + a3 + a1a3a4 − 2a1a3 − a3a4),
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(3.37)
d2 = (a1 + a3 − a1a4 − 1)(a1 + a4 − a1a4 − 1) + (a3 − a1)(a1 − a3a4)(a4 − 1)2

+ (a3 − 1)(a3a4 − 2a1a4 + 2a1 − 1),

(3.38)
d3 = (1− a3a4)(a3 − 1) + (a3a4 − a1a4 + a1 − 1)(a1a4 + a3 − a1 − 2a3a4 + 1)

− a4(a3 − 1)(a1a4 + a3 − a1 − 2a3a4 + 1),

(3.39) d4 = (a1 − a3)(a1a
2
4 − 3a1a4 + 2a1 + a4 − 1),

(3.40) d5 = (a3 − 1)(a3a4 − a1) + (a3 − a1)(a4 − 1)(a1a4 − 2a3a4 + 1)

and

(3.41) d6 = (a1 − a3)(a1 − a3a4).

Proceeding as in Subcase 1.2.1, we get from (3.35)-(3.41) and Lemma 2.4 that

(3.42) d1 = d6 = 0.

By (3.41) and d6 = 0 we have

(3.43) a3a4 = a1.

From (3.10) and (3.43) we get a2 = 0, and so a1 6= 0 and a3 6= 0. Noting that
a4 6= 1, we get from (3.36), (3.43) and d1 = 0 that a21 = (2a1 − 1)a3. This
together with a1 6= 0 and a3 6= 0 reveals that

(3.44) 2a1 6= 1

and

(3.45) a3 =
a21

2a1 − 1
.

By (3.38), (3.43) and (3.45) we get

(3.46) d3 =
(a1 − 1)3

2a1 − 1
.

From (3.45) and a1 6= a3 we have a1 6= 1. This together (3.44) and (3.46)
implies that d3 6= 0. By (3.43) and (3.45) we get

(3.47) a4 =
2a1 − 1

a1
.

By substituting (3.45) and (3.47) into (3.37) and (3.39) we deduce d2 = d4 = 0.
Combining this with (3.42), we know that (3.35) can be rewritten as

d3e
2γ7(z) + d5e

γ7(z) = 0

for all z ∈ C, which together with d3 6= 0 and the standard Valiron-Mokhon’ko
lemma we deduce T (r, eγ7(z)) = S(r, eγ7(z)), which is impossible.

Subcase 1.2.4. Suppose that H and K satisfy H = cK. Then 1, c are
Picard exceptional values of H and K. Hence H(z)− 1 = (H(z)− c)eγ8(z) for
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all z ∈ C, where γ8(z) is a nonconstant polynomial. Combining H = cK with
(3.6), we have

(3.48)
f(z)− a1
f(z − a3)

=
c(f(z + η)− f(z)− a1)

f(z + η)− f(z)− a3

for all z ∈ C. By substituting the left part of (3.6) into H(z) − 1 = (H(z) −
c)eγ8(z) we have

(3.49) f(z) =
a1 − a3a4 + (ca3a4 − a1)e

γ8(z)

1− a4 + (ca4 − 1)eγ8(z)
.

From (3.49) we have
(3.50)

f(z + η)− f(z) =
(c− 1)(a3 − a1)a4(e

γ8(z+η) − eγ8(z))

(1− a4 + (ca4 − 1)eγ8(z+η))(1 − a4 + (ca4 − 1)eγ8(z))
.

By substituting (3.49) and (3.50) into (3.48), we have
(3.51)

h1e
γ8(z+η)+2γ8(z) + h2e

γ8(z+η)+γ8(z) + h3e
2γ8(z) + h4e

γ8(z+η) + h5e
γ8(z) = h6

for all z ∈ C, where

(3.52) h1 = c(a1 − a3a4)(ca4 − 1)2,

(3.53)
h2 = c(c− 1)a4(a3 − a1)(a4 − 1) + c(1− a4)(ca4 − 1)(a1 − a3a4)

− (ca4 − 1)2(ca1 − a3a4),

(3.54) h3 = c(c− 1)a4(a1 − a3)(a4 − 1) + c(1− a4)(ca4 − 1)(a1 − a3a4),

(3.55) h4 = (1− a4)(ca4 − 1)(a3a4 − ca1) + (c− 1)a4(c− a4)(a3 − a1),

(3.56)
h5 = (1−a4)(ca4−1)(a3a4−ca1)+c(a1−a3a4)(1−a4)

2+(c−1)a4(a4−c)(a3−a1)

and

(3.57) h6 = (a3a4 − ca1)(1 − a4)
2.

Proceeding as in Subcase 1.1, we get from (3.51)-(3.57) and Lemma 2.4 that
h1 = h6 = 0. This together with (3.52), (3.57) and a4 6= 1 gives a3a4 = ca1,
and so it follows from (3.52) that

h1 = c(1− c)a1(ca4 − 1)2 = 0.

Combining this with c 6= 0 and c 6= 1, we have a1 = 0 or ca4 = 1.
Suppose that a1 = 0. Then, by a3a4 = ca1, and a4 6= 0 we have a3 = 0,

which contradicts the assumption that a1 and a3 are two distinct finite values
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in the complex plane. Suppose that ca4 = 1. Then, by (3.51)-(3.57) we find
that (3.51) can be rewritten as
(3.58)

c(c− 1)a4(a3 − a1)(a4 − 1)eγ8(z+η)+γ8(z)

+ c(c− 1)a4(a1 − a3)(a4 − 1)e2γ8(z) + (c− 1)a4(c− a4)(a3 − a1)e
γ8(z+η)

+ {(ca1 − a3)(1− a4)
2 + (c− 1)a4(a4 − c)(a3 − a1)}e

γ8(z) = 0

for all z ∈ C. Next, in the same manner as in Subcase 1.1, we can deduce from
(3.58) and Lemma 2.4 that eγ8(z+η)−γ8(z) = 1, and so (3.58) can be rewritten
as

(3.59) (ca1 − a3)(1− a4)
2eγ8(z) = 0

for all z ∈ C. Noting that a4 6= 1, 0 and c 6= 0, 1, we have from (3.59) that
ca1 = a3. This together with a3a4 = ca1 gives a1 = a3 = 0, which is impossible.

Subcase 1.2.5. Suppose that H and K satisfy

(3.60) H − 1 = c(K − 1).

By substituting (3.7) into (3.60) we get eα1 = c, and so

(3.61) H =
c− 1

eβ1 − 1
, K =

(1− c)eβ1

c(1− eβ1)

for all z ∈ C. From (3.10) and the left equalities of (3.6) and (3.61) we get

(3.62) f(z) =
a3a4(c− 1) + a1 − a1e

β1(z)

a4(c− 1) + 1− eβ1(z)

for all z ∈ C. From (3.62) we get

(3.63) f(z + η)− f(z) =
(c− 1)a4(a1 − a3)[e

β1(z) − eβ1(z+η)]

[1 + (c− 1)a4 − eβ1(z+η)][1 + (c− 1)a4 − eβ1(z)]

for all z ∈ C. From the condition a1 6= a3 and the right equalities of (3.6) and
(3.61) we get

(3.64) f(z + η)− f(z) =
[(c− 1)a3a4 − ca1]e

β1(z) + ca1
[(c− 1)a4 − c)]eβ1(z) + c

for all z ∈ C. From (3.63) and (3.64) we get

(3.65) j1e
2β1(z)+β1(z+η)+j2e

β1(z)+β1(z+η)+j3e
2β1(z)+j4e

β1(z)+j5e
β1(z+η) = j6

for all z ∈ C, where

(3.66) j1 = ca1 − (c− 1)a3a4,

(3.67)
j2 = {(c−1)a3a4− ca1}{1+(c−1)a4}− (c−1)a4(a1−a3){(c−1)a4− c}− ca1,

(3.68) j3 = (c−1)a4(a1−a3){(c−1)a4−c}+{(c−1)a3a4−ca1}{1+(c−1)a4},

(3.69) j4 = c(c− 1)a4(a1 − a3),
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(3.70) j5 = ca1{1 + (c− 1)a4} − c(c− 1)a4(a1 − a3)

and

(3.71) j6 = ca1{1 + (c− 1)a4}
2.

Proceeding as in Subcase 1.2.1 we get from (3.51)-(3.57) and Lemma 2.4 that
j1 = j6 = 0, and so 1 + (c− 1)a1 = ca1 − (c− 1)a3a4 = 0. Hence (3.65) can be
rewritten as
(3.72)

{(a1 − a3)[(c− 1)a4 − c] + a3}e
β1(z)+β1(z+η) + (a3 − a1)[(c− 1)a4 − c]e2β1(z)

+ c(a3 − a1)e
β1(z) + c(a1 − a3)e

β1(z+η) = 0

for all z ∈ C. Proceeding as in Subcase 1.2.1, we get from (3.70) that

eβ1(z+η)−β1(z) =
(a1 − a3)[(c− 1)a4 − c]

(a1 − a3)[(c− 1)a4 − c] + a3
= 1,

which implies that a3 = 0. Combining this with ca1 − (c − 1)a3a4 = 0 and
c 6= 0, we get a1 = a3 = 0, which is impossible.

Subcase 1.2.6. Suppose that H and K satisfy

(3.73) [(c− 1)H + 1][(c− 1)K − c] = −c.

By substituting (3.7) into (3.73) we get

(3.74) ceα1−β1 − eα1 − eβ1−α1 + eβ1 + ce−α1 − ce−β1 = c− 1.

By (3.6), (3.7) and the standard Valiron-Mokhon’ko lemma we know that at
least one of eα1 and eβ1 is not a constant.

Suppose that eβ1 is not a constant, eα1 is a constant. Then from (3.74),
Lemma 2.4 and the supposition H 6≡ K we get eα1 = −c. Hence we get from
(3.7) that

(3.75) H − 1 = −c(K − 1).

Proceeding as in Subcase 1.2.3, we get a contradiction from (3.75).
Suppose that eβ1 is a constant, eα1 is not a constant. Then from (3.74),

Lemma 2.4 and the supposition H 6≡ K we get eβ1 = −1 or eβ1 = c, from
which we will derive a contradiction. In fact, if eβ1 = −1, from (3.10) and the
left equalities of (3.6) and (3.7) we get
(3.76)

f(z + η)− f(z) =
2a4(a1 − a3)[e

α1(z) − eα1(z+η)]

(2− a4)2 + a4(2− a4)[eα1(z) + eα1(z+η)] + a24e
α1(z)+α1(z+η)

.

From (3.10) and the right equalities of (3.6) and (3.7) we get from eβ1 = −1
that

(3.77) f(z + η)− f(z) =
(a3a4 − 2a1)− a3a4e

−α1(z)

(a4 − 2)− a4e−α1(z)
.
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From (3.76) and (3.77) we get
(3.78)

k1e
2α1(z)+α1(z+η) + k2e

α1(z)+α1(z+η) + k3e
2α1(z) + k4e

α1(z+η) + k5e
α1(z) = k6,

where

(3.79) k1 = (a3a4 − 2a1)a
2
4,

(3.80) k2 = (2− a4)(a3a4 − 2a1)a4 + 2(a1 − a3)(a4 − 2)a4 − a3a
3
4,

(3.81) k3 = (2 − a4)(a3a4 − 2a1)a4 − 2(a1 − a3)(a4 − 2)a4,

(3.82) k4 = 2(a3 − a1)a
2
4 + a3a

2
4(a4 − 2),

(3.83) k5 = a3a
2
4(a4 − 2) + (a3a4 − 2a1)(2 − a4)

2 + 2(a1 − a3)a
2
4

and

(3.84) k6 = a3a4(a4 − 2)2.

Proceeding as in Subcase 1.2.1 we get from (3.76)-(3.84) and Lemma 2.4 that
k1 = k6 = 0. Hence

(3.85) a3a4 − 2a1 = a3a4(a4 − 2)2 = 0.

Noting that a1 6= a3 and a4 6= 0, 1, we get from (3.85) that a4 = 2, and so
a1 = a3, which is impossible. Similarly we can get a contradiction if eβ1 = c.

Suppose that eα1 and eβ1 are not constants. Then from (3.74), Lemma 2.4
and the supposition H 6≡ K we get ceα1−β1 = −1, this together with (3.7)
gives cH = −K. Next in the same manner as in Subcase 1.2.4 we can get a
contradiction.

Case 2. Suppose that g is not a Möbius transformation of f. We consider
the following two subcases.

Subcase 2.1. Suppose that one of a1, a2 and a3 is ∞, say a3 = ∞. Without
loss of generality, we let a1 = 0, a2 = 1 and a3 = ∞. Then we have (2.1). From
(2.1) and the above supposition we deduce that none of eα, eβ , eβ−α is a
constant. From (2.1), (3.1) and the condition ρ(f) < ∞ we deduce ρ(eα) < ∞
and ρ(eβ) < ∞, and so α, β are polynomials. By substituting (2.1) into (3.1)
we get
(3.86)

eβ(z) − eβ(z+η)−α(z+η)+α(z) − eβ(z+η)−α(z+η)+β(z) + eβ(z)−α(z)+β(z+η)−α(z+η)

+ eβ(z+η)−α(z+η) + eα(z)−α(z+η) − eβ(z)−α(z)−α(z+η) ≡ 1.

Then the only possibly constant terms in the left sides of (3.86) are

−eβ(z+η)−α(z+η)+α(z),−eβ(z+η)−α(z+η)+β(z), eα(z)−α(z+η),−eβ(z)−α(z)−α(z+η).

We discuss the following four subcases.

Subcase 2.1.1. Suppose that eβ(z+η)−α(z+η)+α(z) is a constant. Then

(3.87) deg(β) ≤ deg(α) − 1.
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From (3.86), (3.87) and the above supposition we deduce that the only possibly
constant term on the left side of (3.86) is −eβ(z+η)−α(z+η)+α(z), this together
with Lemma 2.4 gives

(3.88) eβ(z+η)−α(z+η)+α(z) ≡ −1

and

(3.89)
eβ(z+η)−α(z+η) − eβ(z+η)−α(z+η)−α(z) − eβ(z+η)−β(z)−α(z+η)

− eα(z)−α(z+η)−β(z) + e−α(z)−α(z+η) ≡ 1.

From (3.87), (3.89) and the above supposition we deduce that the only possibly
constant term on the left side of (3.8) is −eα(z)−α(z+η)−β(z). Hence we get from
Lemma 2.4 that eα(z)−α(z+η)−β(z) ≡ −1. Combining this with (3.88), we get
eβ(z)+β(z+η) ≡ 1, which is impossible.

Subcase 2.1.2. Suppose that eβ(z+η)−α(z+η)+α(z) is not a constant and
that eβ(z+η)−α(z+η)+β(z) is a constant. Then the highest term of α is equal to 2
times of the highest term of β. Hence deg(α) = deg(β) and the orders of other
terms of the left side of (3.86) apart from eβ(z+η)−α(z+η)+β(z) and eα(z)−α(z+η)

are equal to deg(α), while the order of the term eα(z)−α(z+η) is smaller than
deg(α). This together with Lemma 2.4 gives

(3.90) eα(z)−α(z+η) − eβ(z+η)−α(z+η)+β(z) ≡ 1

and

(3.91)
eβ(z+η)−α(z+η)+α(z)−β(z) − eβ(z+η)−α(z)−α(z+η) − eβ(z+η)−β(z)−α(z+η)

+ e−α(z)−α(z+η) ≡ 1.

From the above analysis we know that the only possibly constant term of the
left side of (3.91) is eβ(z+η)−α(z+η)+α(z)−β(z). This together with Lemma 2.4
gives

(3.92) eβ(z+η)−α(z+η)+α(z)−β(z) ≡ 1, e−β(z+η) − eα(z)−β(z) ≡ 1.

From Lemma 2.4 and the right equality of (3.92) we get e−β(z+η) ≡ 0, which
is impossible.

Subcase 2.1.3. Suppose that eα(z)−α(z+η) is a constant, while

eβ(z+η)−α(z+η)+α(z) and eβ(z+η)−α(z+η)+β(z)

are not constants.

Subcase 2.1.3.1. Suppose that eβ(z)−α(z)−α(z+η) is a constant. Then the
highest term of β is equal to 2 times the highest term of α. This together with
(3.86) and Lemma 2.4 gives

(3.93) eα(z)−α(z+η) − eβ(z)−α(z)−α(z+η) ≡ 1

and

(3.94) eα(z+η)−β(z+η) − eα(z)−β(z) + e−α(z) + e−β(z) ≡ 1.
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From (3.94), Lemma 2.4 and the above supposition we get a contradiction.

Subcase 2.1.3.2. Suppose that eβ(z)−α(z)−α(z+η) is not a constant. Then
from (3.86), Lemma 2.4 and the above supposition we get

(3.95) eα(z)−α(z+η) ≡ 1

and

eβ(z+η)−α(z+η)+α(z)−β(z) + eβ(z+η)−α(z+η) − e−α(z)+β(z+η)−α(z+η)(3.96)

− eβ(z+η)−α(z+η)−β(z) + e−α(z)−α(z+η) ≡ 1.

By substituting (3.95) into (3.96) we get
(3.97)

e2α(z) + eβ(z+η) + eβ(z+η)−β(z)+α(z) − eβ(z+η)+α(z) − e2α(z)+β(z+η)−β(z) ≡ 1.

Noting that none of eα, eβ , eβ−α is a constant, we deduce from (3.97) that at
most one of eβ(z+η)−β(z)+α(z), eβ(z+η)+α(z), e2α(z)+β(z+η)−β(z), say

e2α(z)+β(z+η)−β(z) is a constant.

This together with Lemma 2.4 gives

(3.98) e2α(z)+β(z+η)−β(z) ≡ −1

and

(3.99) e2α(z) + eβ(z+η) + eβ(z+η)−β(z)+α(z) − eβ(z+η)+α(z) = 0.

Multiplying two sides of (3.99) by e−β(z+η)−α(z) and noting (3.95), we get

(3.100) eα(z+η)−β(z+η) + e−α(z) + e−β(z) ≡ 1.

From (3.100), Lemma 2.4 and the above supposition we get a contradiction.

Subcase 2.1.4. Suppose that eβ(z)−α(z)−α(z+η) is a constant, while

eα(z)−α(z+η), eβ(z+η)−α(z+η)+α(z), eβ(z+η)−α(z+η)+β(z) are not constants.

Then it follows from (3.86), Lemma 2.4 and the above supposition that

(3.101) eβ(z)−α(z)−α(z+η) ≡ −1

and
(3.102)

eβ(z) − eβ(z+η)−α(z+η)+α(z) − eβ(z+η)−α(z+η)+β(z) + eβ(z)−α(z)+β(z+η)−α(z+η)

+ eβ(z+η)−α(z+η) + eα(z)−α(z+η) ≡ 0.

By substituting (3.101) into (3.102) we get
(3.103)

e2α(z+η)+α(z+2η) + e2α(z+η) − eα(z+η)+α(z+2η) − e2α(z+η)+α(z+2η)−α(z)

+ eα(z+η)+α(z+2η)−α(z) ≡ 1.

By rewriting (3.103) we have

(3.104) l1(z)e
3α(z) + l2(z)e

2α(z) + l3(z)e
α(z) = 1,
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where

(3.105) l1(z) = e2α(z+η)+α(z+2η)−3α(z),

(3.106) l2(z) = e2α(z+η)−2α(z)−eα(z+η)+α(z+2η)−2α(z)−e2α(z+η)+α(z+2η)−3α(z)

and

(3.107) l3(z) = eα(z+η)+α(z+2η)−2α(z).

From (3.105)-(3.107) and Lemma 2.5 we get

(3.108) T (r, lj(z)) = O(rdeg(α)−1+ε), 1 ≤ j ≤ 3

as r → ∞, where ε is an arbitrary positive number. Next in the same manner
as in Subcase 1.2.1 we can get from (3.104)-(3.108) that l1 = l2 = l3 = 0, which
contradicts (3.105) and (3.107).

Subcase 2.2. Suppose that none of a1, a2 and a3 is ∞. We set (3.6).
In the same manner as in Subcase 1.2 we have (3.7), where α1 and β1 are
polynomials such that none of eβ1 , eα1 , eβ1−α1 is a constant, and such that
T (r,K)+T (r, eα1) +T (r, eβ1) = O(T (r, f)) as r → ∞. From the left equalities
of (3.6) and (3.7) we get

(3.109)

(

1−
a4e

α1(z) − a4
eβ1(z) − 1

)

f(z) = a1 −
a3a4e

α1(z) − a3a4
eβ1(z) − 1

.

From (3.109) and a1 6= a3 we have

(3.110) f(z) =
a1e

β1(z) − a3a4e
α1(z) + a3a4 − a1

eβ1(z) − a4eα1(z) + a4 − 1

and

(3.111) f(z + η) =
a1e

β1(z+η) − a3a4e
α1(z+η) + a3a4 − a1

eβ1(z+η) − a4eα1(z+η) + a4 − 1

for all z ∈ C, where a4 is defined as in (3.10). From (3.7), (3.10) and the right
equalities of (3.6) we get

(3.112)
f(z + η)− f(z)− a1
f(z + η)− f(z)− a3

=
a4e

−α1(z) − a4
e−β1(z) − 1

.

By substituting (3.110) and (3.111) into (3.112) we get

a1a
2
4e

α1(z+η)−β1(z+η) + (a1a
2
4 + a3a4)e

−β1(z) + (a3a4 − a1a
2
4)e

−β1(z+η)

(3.113)

+ 2a4(a1a4 − 2a1 + a3)e
α1(z)−β1(z)+α1(z+η)−β1(z+η) − a3a4e

2α1(z)−2β1(z)

+ (a3a4 − a1)e
α1(z)−2β1(z)

+ (2a1a4 − a1a
2
4 − a3a4)e

α1(z)+α1(z+η)−2β1(z)−β1(z+η)

+ (a3a4 − a1a
2
4)e

2α1(z)−2β1(z)−β1(z+η)

+ (2a1a4 − a3a4 − a1a
2
4)e

α1(z)+α1(z+η)−β1(z+η)
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+ (a1a
2
4 − 2a3a

2
4 + a3a4)e

2α1(z)−β1(z) − a3a4(a4 − 1)2e2α1(z)−β1(z)−β1(z+η)

+ a1(a4 − 1)2eα1(z)−β1(z+η) + a4(a1 − a3)(a4 + 1)eα1(z)−β1(z)−β1(z+η)

− a3a4(a4 − 1)2e−β1(z)−β1(z+η) + a1a
2
4e

2α1(z)+α1(z+η)−2β1(z)−β1(z+η)

+ a1(a4 − 1)2eα1(z)−2β1(z)−β1(z+η) + (a3a4 − a1)e
α1(z)

+ (a3a4 − a1)a
2
4e

2α1(z)+α1(z+η)−β1(z+η)−β1(z)

+ (a3a4 − a1)a
2
4e

α1(z+η)−β1(z)−β1(z+η)

− 2(a3a4 + a1a
2
4 − 2a3a

2
4 − a1)e

α1(z)−β1(z) = a3a4

for all z ∈ C. We discuss the following four subcases.

Subcase 2.2.1. Suppose that one of

eα1(z)−2β1(z), e2α1(z)−β1(z), eα1(z)+α1(z+η)−β1(z+η), eα1(z)−β1(z+η),

eα1(z)−β1(z)−β1(z+η), eα1(z)−2β1(z)−β1(z+η), eα1(z+η)−β1(z)−β1(z+η)

is a nonzero constant, say eα1−2β1 = A1. By substituting eα1 = A1e
2β1 into

(3.113) we have
(3.114)

s1e
4β1(z)+2β1(z+η) + s2e

4β1(z)+β1(z+η) + s3e
3β1(z)+2β1(z+η) + s4e

3β1(z)+β1(z+η)

+ s5e
2β1(z)+2β‘1(z+η) + s6e

4β1(z) + s7e
3β1(z) + s8e

2β1(z)+β1(z+η)

+ s9e
β1(z)+2β1(z+η) + s10e

2β1(z) + s11e
β1(z)+β1(z+η) + s12e

2β1(z+η) + s13e
β1(z)

+ s14e
β1(z+η) = s15

for all z ∈ C, where

(3.115) s1 = (a3a4 − a1)a
2
4A

3
1, s2 = (a1a

2
4 − 2a3a

2
4 + a3a4)A

2
1,

(3.116) s3 = A2
1(2a1a4−a3a4)+(A3

1−A2
1)a1a

2
4, s4 = (a3a4−a1)A1−a3a4A

2
1,

(3.117) s5 = 2a4(a1a4 − 2a1 + a3)A
2
1, s6 = −a3a4(a4 − 1)2A2

1,

(3.118)
s7 = a3a4 − a1a

2
4 + a1(a4 − 1)2A1, s8 = −2(a3a4 + a1a

2
4 − 2a3a

2
4 − a1)A1,

(3.119) s9 = a1a
2
4A1+(2a1a4−a1a

2
4−a3a4)A

2
1, s10 = a4(a1−a3)(a4+1)A1,

(3.120) s11 = (a3a4 − a1)A1 − a3a4, s12 = (a3a4 − a1)a
2
4A1,

(3.121)
s13 = (a3a4−a1a

2
4)+a1(a4−1)2A1, s14 = a1a

2
4+a3a4, s15 = a3a4(a4−1)2.

By rewriting (3.114) we get

s2e
−β1(z+η) + s3e

−β1(z) + s4e
−β1(z)−β1(z+η) + s5e

−2β1(z) + s6e
−2β1(z+η)

(3.122)

+ s7e
−β1(z)−2β1(z+η) + s8e

−2β1(z)−β1(z+η) + s9e
−3β1(z) + s10e

−2β1(z)−2β1(z+η)
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+ s11e
−3β1(z)−β1(z+η) + s12e

−4β1(z) + s13e
−3β1(z)−2β1(z+η)

+ s14e
−4β1(z)−β1(z+η) − s15e

−4β1(z)−2β1(z+η) = −s1

for all z ∈ C. From (3.114), (3.122) and in the same manner as in Subcase 1.2.1
we get s1 = s15 = 0. This together with (3.115), (3.121) and a4 6= 0, 1 gives
a1 = a3 = 0, which is impossible.

Subcase 2.2.2. Suppose that one of
e2α1(z)−2β1(z)−β1(z+η) and e2α1(z)−β1(z)−β1(z+η), say e2α1(z)−2β1(z)−β1(z+η) is

a nonzero constant. Then

(3.123) eα1(z) = A2e
2γ(z)+γ(z+η)

for all z ∈ C, where A2 6= 0 is a constant. By substituting (3.123) into (3.113)
we get
(3.124)

(a3a4 − a1)a
2
4A

3
2e

4γ(z)+4γ(z+η)+γ(z+2η)+(a1a
2
4−2a3a

2
4 + a3a4)A

2
2e

4γ(z)+4γ(z+η)

+ (2a1a4− a3a4− a1a
2
4)A

2
2e

4γ(z)+3γ(z+η)+γ(z+2η)+(a3a4−a1)A2e
4γ(z)+3γ(z+η)

+ a1a
2
4A

3
2e

2γ(z)+4γ(z+η)+γ(z+2η)+2a4(a1a4−2a1+a3)A
2
2e

2γ(z)+3γ(z+η)+γ(z+2η)

− a3a4A
2
2e

2γ(z)+4γ(z+η) − a3a4(a4 − 1)2A2
2e

4γ(z)+2γ(z+η)

+ a1(a4 − 1)2A2e
4γ(z)+γ(z+η) − 2(a3a4 + a1a

2
4 − 2a3a

2
4 − a1)A2e

2γ(z)+3γ(z+η)

+ a1a
2
4A2e

2γ(z)+2γ(z+η)+γ(z+2η) + (a3a4 − a1a
2
4)A

2
2e

2γ(z)+2γ(z+η)

− a3a4e
2γ(z)+2γ(z+η) + (2a1a4 − a1a

2
4 − a3a4)A

2
2e

3γ(z+η)+γ(z+2η)

+ a4(a1 − a3)(a4 + 1)A2e
2γ(z)+γ(z+η) + (a3a4 − a1)A2e

3γ(z+η)

+ (a3a4 − a1)a
2
4A2e

2γ(z+η)+γ(z+2η) + (a1a
2
4 + a3a4)e

2γ(z+η)

+ (a3a4 − a1a
2
4)e

2γ(z) + a1(a4 − 1)2A2e
γ(z+η) = a3a4(a4 − 1)2

for all z ∈ C. In the same manner as in Subcase 2.2.1 we get

(a3a4 − a1)a
2
4A

3
2 = a3a4(a4 − 1)2 = 0,

which together with a4 6= 0, 1 implies that a1 = a3 = 0, this is impossible.

Subcase 2.2.3. Suppose that

eα1(z)−2β1(z), e2α1(z)−β1(z), eα1(z)+α1(z+η)−β1(z+η), eα1(z)−β1(z)−β1(z+η),

eα1(z)−β1(z+η), eα1(z)−2β1(z)−β1(z+η), eα1(z+η)−β1(z)−β1(z+η),

e2α1(z)−2β1(z)−β1(z+η), e2α1(z)−β1(z)−β1(z+η)

are not constants, and that one of

eα1(z)+α1(z+η)−2β1(z)−β1(z+η), e2α1(z)+α1(z+η)−β1(z)−β1(z+η)

is a constant.



UNIQUENESS RESULTS OF MEROMORPHIC FUNCTIONS 1419

If eα1(z)+α1(z+η)−2β1(z)−β1(z+η) and e2α1(z)+α1(z+η)−β1(z)−β1(z+η) are con-
stants, then eα1(z)+β1(z) is a constant. Next in the same manner as in the
proof of Subcase 2.2.1 we get a contradiction.

If e2α1(z)+α1(z+η)−β1(z)−β1(z+η) is not a constant, eα1(z)+α1(z+η)−2β1(z)−β1(z+η)

is a constant, then we get from (3.113) and Lemma 2.4 that

(3.125) (2a1a4 − a1a
2
4 − a3a4)e

α1(z)+α1(z+η)−2β1(z)−β1(z+η) = a3a4

and
(3.126)

a1a
2
4e

α1(z+η)−β1(z+η) + (a1a
2
4 + a3a4)e

−β1(z) + (a3a4 − a1a
2
4)e

−β1(z+η)

+ 2a4(a1a4 − 2a1 + a3)e
α1(z)−β1(z)+α1(z+η)−β1(z+η) − a3a4e

2α1(z)−2β1(z)

+ (a3a4 − a1)e
α1(z)−2β1(z) + (a3a4 − a1a

2
4)e

2α1(z)−2β1(z)−β1(z+η)

+ (2a1a4 − a3a4 − a1a
2
4)e

α1(z)+α1(z+η)−β1(z+η)

+ (a1a
2
4 − 2a3a

2
4 + a3a4)e

2α1(z)−β1(z) − a3a4(a4 − 1)2e2α1(z)−β1(z)−β1(z+η)

+ a1(a4 − 1)2eα1(z)−β1(z+η) + a4(a1 − a3)(a4 + 1)eα1(z)−β1(z)−β1(z+η)

− a3a4(a4 − 1)2e−β1(z)−β1(z+η) + a1a
2
4e

2α1(z)+α1(z+η)−2β1(z)−β1(z+η)

+ a1(a4 − 1)2eα1(z)−2β1(z)−β1(z+η) + (a3a4 − a1)e
α1(z)

+ (a3a4 − a1)a
2
4e

2α1(z)+α1(z+η)−β1(z+η)−β1(z)

+ (a3a4 − a1)a
2
4e

α1(z+η)−β1(z)−β1(z+η)

− 2(a3a4 + a1a
2
4 − 2a3a

2
4 − a1)e

α1(z)−β1(z) = 0

for all z ∈ C.
If additionally a3 = 0, then from (3.125) we get a4 = 2, and so (3.126) can

be rewritten as

4eα1(z+η)−β1(z+η) + 4e−β1(z) − 4e−β1(z+η) − eα1(z)−2β1(z)(3.127)

− 4e2α1(z)−2β1(z)−β1(z+η) + 4e2α1(z)−β1(z) + eα1(z)−β1(z+η)

+ 6eα1(z)−β1(z)−β1(z+η) + 4e2α1(z)+α1(z+η)−2β1(z)−β1(z+η)

+ eα1(z)−2β1(z)−β1(z+η) − eα1(z) − 4e2α1(z)+α1(z+η)−β1(z+η)−β1(z)

− 4eα1(z+η)−β1(z)−β1(z+η) − 6eα1(z)−β1(z) = 0

for all z ∈ C. Multiplied by e−2α1(z)−α1(z+η)+β1(z)+β1(z+η) on two sides of
(3.127), we have
(3.128)

4eβ1(z)−2α1(z) + 4eβ1(z+η)−2α1(z)−α1(z+η) − 4eβ1(z)−2α1(z)−α1(z+η)

− e−α1(z)−α1(z+η)−β1(z)+β1(z+η) − 4e−β1(z)−α1(z+η) + 4eβ1(z+η)−α1(z+η)

+ eβ1(z)−α1(z)−α1(z+η) + 6e−α1(z)−α1(z+η) + 4e−β1(z) + e−α1(z)−α1(z+η)−β1(z)

− eβ1(z)−α1(z)+β1(z+η)−α1(z+η) − 4e−2α1(z) − 6eβ1(z+η)−α1(z)−α1(z+η) = 4
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for all z ∈ C. Proceeding as in the proof of Subcase 2.2.1 and applying the
above supposition we know that every term of the left side of (3.128) is not
a constant. This together with Lemma 2.4 gives a contradiction. Next we
suppose that a3 6= 0. Multiplied by e2β1(z)−2α1(z) on two sides of (3.126), we
have
(3.129)

a1a
2
4e

α1(z+η)−2α1(z)+2β1(z)−β1(z+η) + (a1a
2
4 + a3a4)e

β1(z)−2α1(z)

+ (a3a4 − a1a
2
4)e

2β1(z)−β1(z+η)−2α1(z)

+ 2a4(a1a4 − 2a1 + a3)e
α1(z+η)−β1(z+η)+β1(z)−α1(z) + (a3a4 − a1)e

−α1(z)

+ (a3a4 − a1a
2
4)e

−β1(z+η)+(2a1a4− a3a4− a1a
2
4)e

α1(z+η)−β1(z+η)+2β1(z)−α1(z)

+ (a1a
2
4 − 2a3a

2
4 + a3a4)e

β1(z) − a3a4(a4 − 1)2eβ1(z)−β1(z+η)

+ a1(a4 − 1)2e2β1(z)−α1(z)−β1(z+η) + a4(a1 − a3)(a4 + 1)eβ1(z)−α1(z)−β1(z+η)

− a3a4(a4 − 1)2eβ1(z)−2α1(z)−β1(z+η) + a1a
2
4e

α1(z+η)−β1(z+η)

+ a1(a4 − 1)2e−β1(z+η)−α1(z) + (a3a4 − a1)e
2β1(z)−α1(z)

+ (a3a4 − a1)a
2
4e

α1(z+η)−β1(z+η)+β1(z)

+ (a3a4 − a1)a
2
4e

α1(z+η)−β1(z+η)+β1(z)−2α1(z)

− 2(a3a4 + a1a
2
4 − 2a3a

2
4 − a1)e

β1(z)−α1(z) = a3a4.

From (3.125) and a3 6= 0, a4 6= 0 we know that

(3.130) 2adeg(α1) = 3bdeg(β1),

where and in what follows, adeg(α1) and bdeg(β1) denote the coefficients of the
highest terms of α1 and β1 respectively. From (3.130) we know that every
non-vanished term of the left side of (3.129) is not a constant. This together
with Lemma 2.4 gives a3a4 = 0, which is impossible.

If eα1(z)+α1(z+η)−2β1(z)−β1(z+η) is not a constant, e2α1(z)+α1(z+η)−β1(z)−β1(z+η)

is a constant. In the same manner as above we can get a contradiction.

Subcase 2.2.4. Suppose that
eα1(z)−2β1(z), e2α1(z)−β1(z), eα1(z)+α1(z+η)−β1(z+η), eα1(z)−β1(z+η),
eα1(z)−β1(z)−β1(z+η), eα1(z)−2β1(z)−β1(z+η), eα1(z+η)−β1(z)−β1(z+η),
e2α1(z)−2β1(z)−β1(z+η), e2α1(z)−β1(z)−β1(z+η), eα1(z)+α1(z+η)−2β1(z)−β1(z+η),
e2α1(z)+α1(z+η)−β1(z)−β1(z+η) are not constants. Then from (3.113), Lemma

2.4 and the above supposition we get a3a4 = 0, and so a3 = 0. Hence (3.113)
can be rewritten as

a24e
2β1(z)−2α1(z) + a24e

β1(z)+β1(z+η)−2α1(z)−α1(z+η) − a24e
2β1(z)−2α1(z)−α1(z+η)

(3.131)

+ 2a4(a4 − 2)eβ1(z)−α1(z) − eβ1(z+η)−α1(z)−α1(z+η) + (2a4 − a24)e
−α1(z)

− a24e
−α1(z+η) + (2a4 − a24)e

2β1(z)−α1(z) + a24e
β1(z)+β1(z+η)−α1(z+η)
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+ (a4 − 1)2e2β1(z)−α1(z)−α1(z+η) + a4(a4 + 1)eβ1(z)−α1(z)−α1(z+η)

+ (a4 − 1)2e−α1(z)−α1(z+η) − eα1(z) − a24e
β1(z) − a24e

β1(z)−2α1(z)

− 2(a24 − 1)eβ1(z)−α1(z)+β1(z+η)−α1(z+η) = −a24

for all z ∈ C. Next in the same manner as in Subcase 2.2.1 we can prove
that every non-vanished term of the left side of (3.131) is not a constant. This
together with Lemma 2.4 gives−a24 = 0, and so a4 = 0, which is impossible. �

Acknowledgements. The authors wish to express their thanks to the referee
for his/her valuable suggestions and comments.

References

[1] A. H. H. Al-khaladi, Meromorphic functions that share three values with one share value

for their derivatives, J. Math. (Wuhan) 20 (2000), no. 2, 156–160.
[2] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+η) and difference

equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
[3] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann.

Acad. Sci. Fenn. 31 (2006), no. 2, 463–478.
[4] , Difference analogue of the lemma on the logarithmic derivative with applica-

tions to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477–487.
[5] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[6] J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic

functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no.
1-4, 81–92.

[7] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results

for shifts of meromorphic functions and sufficient conditions for periodicity, J. Math.
Anal. Appl. 355 (2009), no. 1, 352–363.

[8] I. Lahiri, Weighted sharing of three values and uniqueness of meromorphic functions,
Kodai Math. J. 24 (2001), no. 3, 421–435.

[9] I. Lahiri and A. Sarkar, On a uniqueness theorem of Tohge, Arch. Math. (Basel) 84

(2005), no. 5, 461–469.
[10] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter,

Berlin/New York, 1993.
[11] I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials,

J. London Math. Soc. 76 (2007), no. 3, 556–566.
[12] , Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math.

Sci. 83 (2007), no. 8, 148–151.

[13] X. M. Li and Z. T. Wen, Uniqueness theorems of meromorphis functions sharing three

values, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 215–232.
[14] A. Z. Mokhon’ko, On the Nevanlinna characteristics of some meromorphic functions,

In: Theory of Functions, Functional Analysis and Their Applications vol. 14, 83–87,
Izd-vo Khar’kovsk, Un-ta, Kharkov, 1971.

[15] J. M. Whittaker, Interpolatory Function Theory, Cambridge Tract No. 33, Cambridge
University Press, 1964.

[16] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Aca-
demic Publishers, Dordrecht/Boston/London, 2003.

[17] H. X. Yi, Unicity theorems for meromorphic functions that share three values, Kodai
Math. J. 18 (1995), no. 2, 300–314.

[18] , Meromorphic functions with weighted sharing of three values, Complex Var.
Theory Appl. 50 (2005), no. 12, 923–934.



1422 XIAO-MIN LI, HONG-XUN YI, AND CONG-YUN KANG

[19] J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions,
J. Math. Anal. Appl. 367 (2010), no. 2, 401–408.

Xiao-Min Li

Department of Mathematics

Ocean University of China

Qingdao, Shandong 266100, P. R. China

and

Department of Physics and Mathematics

University of Eastern Finland

P.O.Box 111, FI-80101 Joensuu, Finland

E-mail address: lixiaomin@ouc.edu.cn

Hong-Xun Yi

Department of Mathematics

Shandong University

Jinan, Shandong 250100, P. R. China

E-mail address: hxyi@sdu.edu.cn

Cong-Yun Kang

Department of Mathematics

Ocean University of China

Qingdao, Shandong 266100, P. R. China

E-mail address: yunyun107@163.com


