DOI QR코드

DOI QR Code

Monitoring for the Resistance of Botrytis cinerea Causing Gray Mold Against Mepanipyrim

Mepanipyrim에 대한 잿빛곰팡이병균의 저항성 검정

  • Kim, Ah Hyeong (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Seon Bo (Sungbo Chemical) ;
  • Han, Kee Don (Sungbo Chemical) ;
  • Kim, Heung Tae (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 김아형 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김선보 (성보화학(주)) ;
  • 한기돈 (성보화학(주)) ;
  • 김흥태 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2015.08.25
  • Accepted : 2015.09.18
  • Published : 2015.09.30

Abstract

With 86 isolates of Botrytis cinerea obtained from diseased fruits of tomato, strawberry and cucumber, it was conducted to detect the fungicide resistance of B. cinerea against mepanipyrim through an agar dilution method. FGA medium was used for monitoring the resistance. Among 86 isolates of B. cinerea, resistant isolates were composed by 23.3%, which was different according to regions isolating the pathogen. In accordance with isolation region, the isolation frequency of resistant isolates was as follows; that of Gyeonggi, Gyeongnam/Pusan and chungnam was 28.6%, 33.3% and 12.8%, respectively. The resistant isolates of B. cinerea showed the cross resistance between mepanipyrim and pyrimethanil. Also the pathogenicity of B. cinerea resistant to mepanipyrim was high as like that of sensitive isolates. Because of them, it should be necessary to manage the spraying system of mepanipyrim and the monitoring for the fungicide resistance.

병든 토마토, 딸기, 오이 등의 열매에서 분리한 86개의 Botrytis cinerea의 균주를 가지고 한천희석법을 통하여 mepanipyrim의 균사생장 억제효과를 조사하였으며, $EC_{50}$값을 계산하여 저항성 모니터링을 실시하였다. 병원균의 저항성 모니터링을 PDA 배지에서 실시할 경우 mepanipyrim의 균사생장 억제효과를 정확하게 검정할 수 없었으나, FGA 배지를 사용하였을 때에는 감수성과 저항성 반응을 뚜렷하게 구분할 수 있었다. 실험에 사용한 B. cinerea의 86개 균주를 $1.0{\mu}g\;mL^{-1}$$EC_{50}$값을 가지고 감수성과 저항성을 구분하였으며, 전체 균주 중에서 20개인 23.3%가 저항성균으로 분류되었다. 지역에 따라서 저항성균의 분리비에는 차이가 있었는데, 경기, 경남/부산, 그리고 충남에서 각각 분리한 균주 중에서 저항성균의 비율은 28.6, 33.3, 12.8%로, 경남/부산 지역에서 가장 높았다. Mepanipyrim에 대한 저항성균은 pyrimethanil에 대해서도 교차저항성을 보였으며, 오이 자엽에 대한 병원성을 감수성 균주와 비교해 보아도 전혀 떨어지지 않았다. 따라서 포장에서 anilinopyrimidine계 살균제를 효과적으로 사용하기 위해서 적극적인 관리가 필요한 상태이다.

Keywords

References

  1. Agrios G. N. (2005) Botritis disease, In Plant pathology, 5th; Agrios G. N. Ed.; Elsevier Academic Press: Burlington, MA, USA, pp. 510-514.
  2. Caiazzo, R., Y. K. Kim and C. L. Xiao (2014) Occurrence and phenotypes of pyrimethanil resistance in Penicillium expansum from apple in Washington State. Plant Dis. 98:924-928. https://doi.org/10.1094/PDIS-07-13-0721-RE
  3. Daniels, A. and J. A. Lucas (1995) Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 1. In-vivo activity against Botrytis fabae on broad bean (Vicia faba) leaves. Pesticide Sci. 45:43-48. https://doi.org/10.1002/ps.2780450107
  4. Edlich, W., G. Lorenz, H. Lyr, E. Nega and E.-H. Pommer (1989) New aspects on the infection mechanism of Botrytis cinerea Pers. Neth. J. Plant Pathol. 95:53-62. https://doi.org/10.1007/BF01974284
  5. Hwang, S., H.-R. Kim, J. Kim, J.-H. Park, S.-B. Lee, S.-R. Cheong and H. T. Kim (2010) Sensitivity of Colletotrichum spp. isolated from grapes in Korea to carbendazim and the mixture of carbendazim plus diethofencarb. Plant Pathol. J. 26:49-56. https://doi.org/10.5423/PPJ.2010.26.1.049
  6. Kim, A. H., S. B. Kim, K. D. Han and H. T. Kim (2014) Monitoring for the resistance of strobilurin fungicide against Botrytis cinerea causing gray mold disease. Korean J. Pestic. Sci. 18:161-167. (in Korean) https://doi.org/10.7585/kjps.2014.18.3.161
  7. Kim, J., S. W. Lee, J. Y. Min, Y.-S. Bae, M. U. Shin, S. B. Kim, M. K. Kim, C. R. Yeon, J. Y. Lim and H. T. Kim (2007) Development of control system with fungicides against diseases of ginseng plant. Res. Plant Dis. 13:164-169. (in Korean) https://doi.org/10.5423/RPD.2007.13.3.164
  8. Latorre, B. A., I. Spadaro and M. E. Rioja (2002) Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Prot. 21:957-961. https://doi.org/10.1016/S0261-2194(02)00074-1
  9. Lee, S. W., J. Kim, J. Y. Min, Y.-S. Bae and H. T. Kim (2007) Monitoring for the resistance of Botrytis cinerea causing ginseng gray mold to procymidone and Its multiple resistance with the mixture of carbendazim/diethofencarb. Korean J. Pestic. Sci. 13:170-176. (in Korean)
  10. Leroux, P. (1996) Recent developments in the mode of action of fungicides. Pestic. Sci. 47:191-197. https://doi.org/10.1002/(SICI)1096-9063(199606)47:2<191::AID-PS415>3.0.CO;2-I
  11. Milling, R. J. and C. J. Richardson (1995) Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. Pesticide Sci. 45:43-48. https://doi.org/10.1002/ps.2780450107
  12. Miura, I., T. Kamakura, S. Maeno, S. Hayashi and I. Yamaguchi (1994) Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pest. Biochem. Physiol. 48:222-228. https://doi.org/10.1006/pest.1994.1023
  13. Myresiotis, C. K., G. A. Bardas and G. S. Karaoglanidis (2008) Baseline sensitivity of Botrytis cinerea to pyraclostrobin and boscalid and control of anilinopyrimidine- and benzimidazole-resistant strains by these fungicides. Plant Dis. 92:1427-1431. https://doi.org/10.1094/PDIS-92-10-1427
  14. Panebianco, A., I. Castello, G. Cirvilleri, G. Perrone, F. Epifani, M. Ferrara, G. Polizzi, D. R. Walters and A. Vitale (2015) Detection of Botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Prot. 77:65-73. https://doi.org/10.1016/j.cropro.2015.07.010
  15. Staples, R. C. and A. M. Mayer (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol. Letter 134:1-7. https://doi.org/10.1111/j.1574-6968.1995.tb07905.x
  16. Takagaki, M., I. Miura and K. Nagayama (2004) A Method for monitoring the sensitivity of Botrytis cinerea to mepanipyrim. 29:369-371. https://doi.org/10.1584/jpestics.29.369