DOI QR코드

DOI QR Code

Pharmacological Effects of Natural Products for Cardiovascular Diseases

천연물의 심혈관질환에 대한 약리학적 효과

  • Lim, Leejin (Department of Biochemistry and Molecular Biology, Chosun University School of Medicine) ;
  • Park, Pyoung Sim (Department of Food Nutrient and Culinary, Chosun College of Science & Technology) ;
  • Song, Heesang (Department of Biochemistry and Molecular Biology, Chosun University School of Medicine)
  • 임리진 (조선대학교 의과대학 생화학교실) ;
  • 박평심 (조선이공대학교 식품영양조리과학과) ;
  • 송희상 (조선대학교 의과대학 생화학교실)
  • Received : 2015.04.28
  • Accepted : 2015.07.30
  • Published : 2015.08.30

Abstract

Cardiovascular disease is one of the leading cause of death in many developed countries as well as developing countries. Many evidences indicate that natural products have profound beneficial effects for cardioprotection. In addition to the crude extracts, an identified single compound may be used as a lead molecule for the therapeutic interests. In this review, we discuss promising natural products for cardiovascular diseases, their molecular targets, and their mechanisms, which may help the further direction of studies and applications of natural products for cardiovascular diseases.

Keywords

References

  1. Rahman, K. and Lowe, G. M. : Garlic and cardiovascular disease: a critical review. J. Nutr. 136, 736S (2006). https://doi.org/10.1093/jn/136.3.736S
  2. Babu, P. V. and Liu, D. : Green tea catechins and cardiovascular health: an update. Curr. Med. Chem. 15, 1840 (2008). https://doi.org/10.2174/092986708785132979
  3. Wood, D. : Established and emerging cardiovascular risk factors. Am. Heart J. 141, S49 (2001). https://doi.org/10.1067/mhj.2001.109951
  4. Gorinstein, S., Zemser, M., Haruenkit, R., Chuthakorn, R., Grauer, F., Martin-Belloso, O. and Trakhtenberg, S. : Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon. J. Nutr. Biochem. 10, 367 (1999). https://doi.org/10.1016/S0955-2863(99)00017-0
  5. Townsend, P. A., Scarabelli, T. M., Pasini, E., Gitti, G., Menegazzi, M., Suzuki, H., Knight, R. A., Latchman, D. S. and Stephanou, A. : Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/ reperfusion-induced apoptosis. FASEB J. 18, 1621 (2004). https://doi.org/10.1096/fj.04-1716fje
  6. Rankinen, T., Sarzynski, M. A., Ghosh, S. and Bouchard, C. : Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ. Res. 116, 909 (2015). https://doi.org/10.1161/CIRCRESAHA.116.302888
  7. 주요 질환별 기술개발 동향 보고서(심혈관 질환), 국가생명공학정책연구센터 (2009).
  8. Wiwanitkit, S. and Wiwanitkit, V. : Inappropriate concomitant use of amlodipine and simvastatin: A report on its incidence in a primary care unit. Indian J. Endocrinol. Metab. 15 Suppl 4, S409 (2011). https://doi.org/10.4103/2230-8210.86989
  9. Morihara, N., Sumioka, I., Ide, N., Moriguchi, T., Uda, N. and Kyo, E. : Aged garlic extract maintains cardiovascular homeostasis in mice and rats. J. Nutr. 136, 777S (2006). https://doi.org/10.1093/jn/136.3.777S
  10. Chang, W., Lim, S., Song, H., Song, B. W., Kim, H. J., Cha, M. J., Sung, J. M., Kim, T. W. and Hwang, K. C. : Cordycepin inhibits vascular smooth muscle cell proliferation. Eur. J. Pharmacol. 597, 64 (2008). https://doi.org/10.1016/j.ejphar.2008.08.030
  11. Yue, R., Hu, H., Yiu, K. H., Luo, T., Zhou, Z., Xu, L., Zhang, S., Li, K. and Yu, Z. : Lycopene protects against hypoxia/ reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes. PLoS One. 7, e50778 (2012). https://doi.org/10.1371/journal.pone.0050778
  12. Shen, M., Wu, R. X., Zhao, L., Li, J., Guo, H. T., Fan, R., Cui, Y., Wang, Y. M., Yue, S. Q. and Pei, J. M. : Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS One. 7, e51223 (2012). https://doi.org/10.1371/journal.pone.0051223
  13. Gross, P. L. and Weitz, J. I.: New antithrombotic drugs. Clin Pharmacol Ther. 86, 139 (2009) https://doi.org/10.1038/clpt.2009.98
  14. Gaglia, M. A., Jr., Manoukian, S. V. and Waksman, R. : Novel antiplatelet therapy. Am. Heart. J. 160, 595 (2010). https://doi.org/10.1016/j.ahj.2010.06.007
  15. Broos, K., Feys, H. B., De Meyer, S. F., Vanhoorelbeke, K. and Deckmyn, H. : Platelets at work in primary hemostasis. Blood Rev. 25, 155 (2011). https://doi.org/10.1016/j.blre.2011.03.002
  16. Al-Reza, S. M., Bajpai, V. K. and Kang, S. C. : Antioxidant and antilisterial effect of seed essential oil and organic extracts from Zizyphus jujuba. Food Chem. Toxicol. 47, 2374 (2009). https://doi.org/10.1016/j.fct.2009.06.033
  17. Al-Reza, S. M., Yoon, J. I., Kim, H. J., Kim, J. S. and Kang, S. C. : Anti-inflammatory activity of seed essential oil from Zizyphus jujuba. Food Chem. Toxicol. 48, 639 (2010). https://doi.org/10.1016/j.fct.2009.11.045
  18. Hung, C. F., Hsu, B. Y., Chang, S. C. and Chen, B. H. : Antiproliferation of melanoma cells by polysaccharide isolated from Zizyphus jujuba. Nutrition. 28, 98 (2012). https://doi.org/10.1016/j.nut.2011.05.009
  19. Mahajan, R. T. and Chopda, M. Z. : Phyto-Phanmacology of Ziziphus jujube Mill-A plant review. Phcog. Rev. 3, 320 (2009).
  20. Zhao, J., Li, S. P., Yang, F. Q., Li, P. and Wang, Y. T. : Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. J. Chromatogr. A. 1108, 188 (2006). https://doi.org/10.1016/j.chroma.2005.12.104
  21. Kim, H. S. : Effects of the Zizyphus jujuba Seeds Extract on the lipid components in hyperlipidemic rats. J. Food Sci. Nutr. 7, 72 (2002). https://doi.org/10.3746/jfn.2002.7.1.072
  22. Wan, H. Y., Ding, L., Kong, X. P., Liu, S. J. and Chen, X. J. : Effect if total saponins of semen Ziziphi spinosae on hypoxiareoxygenation injury in myocardial cells. Chinese J. Pathophysio. 13, 522 (1997).
  23. Seo, E. J., Lee, S. Y., Kang, S. S. and Jung, Y. S. : Zizyphus jujuba and its active component jujuboside B inhibit platelet aggregation. Phytother. Res. 27, 829 (2013). https://doi.org/10.1002/ptr.4809
  24. Hanasaki, K., Nakano, T. and Arita, H. : Two phasic generation of thromboxane A2 by the action of collagen on rat platelets. Thromb. Res. 46, 425 (1987). https://doi.org/10.1016/0049-3848(87)90130-7
  25. Jennings, L. K. : Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost. 102, 248 (2009). https://doi.org/10.1160/TH09-03-0192
  26. Zhang, H. Y., Liu, H., Yang, M. and Wei, S. F. : Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent. Pharm. Biol. 51, 221 (2013). https://doi.org/10.3109/13880209.2012.717088
  27. Akao, T., Kobashi, K. and Aburada, M. : Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17, 1573 (1994). https://doi.org/10.1248/bpb.17.1573
  28. Suzuki, Y., Kondo, K., Ikeda, Y. and Umemura, K. : Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med. 67, 807 (2001). https://doi.org/10.1055/s-2001-18842
  29. Park, J. C., Yu, Y. B. and Lee, J. H. : Isolation of steroids and flavonoids from the herb of oenanthe javanica DC. Korean J. Pharmacognosy. 24, 244 (1993).
  30. Yang, X. B., Huang, Z. M., Cao, W. B., Zheng, M., Chen, H. Y. and Zhang, J. Z. : Antidiabetic effect of Oenanthe javanica flavone. Acta Pharmacol. Sin. 21, 239 (2000).
  31. Ji, G., Yao, X., Zang, Z. and Huang, Z. : [Antiarrhythmic effect of Oenanthe javanica (Bl.) DC. injection]. Zhongguo Zhong Yao Za Zhi. 15, 429 (1990).
  32. Ma, C. J., Lee, K. Y., Jeong, E. J., Kim, S. H., Park, J., Choi, Y. H., Kim, Y. C. and Sung, S. H. : Persicarin from water dropwort (Oenanthe javanica) protects primary cultured rat cortical cells from glutamate-induced neurotoxicity. Phytother. Res. 24, 913 (2010).
  33. Ku, S. K., Kim, T. H., Lee, S., Kim, S. M. and Bae, J. S. : Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem. Toxicol. 53, 197 (2013). https://doi.org/10.1016/j.fct.2012.11.040
  34. Cheng, T. J. : [Protective action of seed oil of Hippophae rhamnoides L. (HR) against experimental liver injury in mice]. Zhonghua Yu Fang Yi Xue Za Zhi. 26, 227 (1992).
  35. Gao, X., Ohlander, M., Jeppsson, N., Bjork, L. and Trajkovski, V. : Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 48, 1485 (2000). https://doi.org/10.1021/jf991072g
  36. Suleyman, H., Demirezer, L. O., Buyukokuroglu, M. E., Akcay, M. F., Gepdiremen, A., Banoglu, Z. N. and Gocer, F. : Antiulcerogenic effect of Hippophae rhamnoides L. Phytother. Res. 15, 625 (2001). https://doi.org/10.1002/ptr.831
  37. Johansson, A. K., Korte, H., Yang, B., Stanley, J. C. and Kallio, H. P. : Sea buckthorn berry oil inhibits platelet aggregation. J. Nutr. Biochem. 11, 491 (2000). https://doi.org/10.1016/S0955-2863(00)00105-4
  38. Cheng, J., Kondo, K., Suzuki, Y., Ikeda, Y., Meng, X. and Umemura, K. : Inhibitory effects of total flavones of Hippophae Rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci. 72, 2263 (2003). https://doi.org/10.1016/S0024-3205(03)00114-0
  39. Hsu, J. H., Wu, Y. C., Liu, I. M. and Cheng, J. T. : Release of acetylcholine to raise insulin secretion in Wistar rats by oleanolic acid, one of the active principles contained in Cornus officinalis. Neurosci. Lett. 404, 112 (2006). https://doi.org/10.1016/j.neulet.2006.05.025
  40. Qian, D. S., Zhu, Y. F. and Zhu, Q. : [Effect of alcohol extract of Cornus officinalis Sieb. et Zucc on GLUT4 expression in skeletal muscle in type 2 (non-insulin-dependent) diabetic mellitus rats]. Zhongguo Zhong Yao Za Zhi. 26, 859 (2001).
  41. Li, S., He, Z., Guo, L., Huang, L., Wang, J. and He, W. : Behavioral alterations associated with a down regulation of HCN1 mRNA in hippocampal cornus ammon 1 region and neocortex after chronic incomplete global cerebral ischemia in rats. Neuroscience. 165, 654 (2010). https://doi.org/10.1016/j.neuroscience.2009.10.053
  42. Zhao, Z., Sun, P., Chauhan, N., Kaur, J., Hill, M. D., Papadakis, M. and Buchan, A. M. : Neuroprotection and neurogenesis: modulation of cornus ammonis 1 neuronal survival after transient forebrain ischemia by prior fimbria-fornix deafferentation. Neuroscience. 140, 219 (2006). https://doi.org/10.1016/j.neuroscience.2006.02.011
  43. Kang, D. G., Choi, D. H., Lee, J. K., Lee, Y. J., Moon, M. K., Yang, S. N., Kwon, T. O., Kwon, J. W., Kim, J. S. and Lee, H. S. : Endothelial NO/cGMP-dependent vascular relaxation of cornuside isolated from the fruit of Cornus officinalis. Planta Med. 73, 1436 (2007). https://doi.org/10.1055/s-2007-990243
  44. Zhang, Q. C., Zhao, Y. and Bian, H. M. : Antiplatelet activity of a novel formula composed of malic acid, succinic acid and citric acid from Cornus officinalis fruit. Phytother. Res. 27, 1894 (2013). https://doi.org/10.1002/ptr.4934
  45. Koo, Y. K., Kim, J. M., Koo, J. Y., Kang, S. S., Bae, K., Kim, Y. S., Chung, J. H. and Yun-Choi, H. S. : Platelet antiaggregatory and blood anti-coagulant effects of compounds isolated from Paeonia lactiflora and Paeonia suffruticosa. Pharmazie. 65, 624 (2010).
  46. Mann, J. and Oddou, P. : Ongoing clinical trials in systemic hypertension. Expert. Opin. Investig. Drugs. 10, 2031 (2001). https://doi.org/10.1517/13543784.10.11.2031
  47. Rosenthal, J. : Role of renal and extrarenal renin-angiotensin system in the mechanism of arterial hypertension and its sequelae. Steroids. 58, 566 (1993). https://doi.org/10.1016/0039-128X(93)90097-7
  48. Kato, H. and Suzuki, T. : Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffi. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry 10, 972 (1971). https://doi.org/10.1021/bi00782a007
  49. Ondetti, M. A., Rubin, B. and Cushman, D. W. : Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196, 441 (1977). https://doi.org/10.1126/science.191908
  50. Yamori, Y., Nara, Y., Tsubouchi, T., Sogawa, Y., Ikeda, K. and Horie, R. : Dietary prevention of stroke and its mechanisms in stroke-prone spontaneously hypertensive rats--preventive effect of dietary fibre and palmitoleic acid. J. Hypertens. Suppl. 4, S449 (1986).
  51. Suetsuna, K., Maekawa, K. and Chen, J. R. : Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15, 267 (2004). https://doi.org/10.1016/j.jnutbio.2003.11.004
  52. Chien, T. H. : Pharmacological action of Eucommia ulmoides, Oliv. Jpn. J. Pharmacol. 6, 122 (1957). https://doi.org/10.1254/jjp.6.122
  53. Deyama, T., Nishibe, S. and Nakazawa, Y. : Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol. Sin. 22, 1057 (2001).
  54. Kwan, C. Y., Chen, C. X., Deyama, T. and Nishibe, S. : Endothelium-dependent vasorelaxant effects of the aqueous extracts of the Eucommia ulmoides Oliv. leaf and bark: implications on their antihypertensive action. Vascul. Pharmacol. 40, 229 (2003). https://doi.org/10.1016/j.vph.2003.09.001
  55. Kwan, C. Y., Zhang, W. B., Deyama, T. and Nishibe, S. : Endothelium-dependent vascular relaxation induced by Eucommia ulmoides Oliv. bark extract is mediated by NO and EDHF in small vessels. Naunyn Schmiedebergs Arch. Pharmacol. 369, 206 (2004). https://doi.org/10.1007/s00210-003-0822-4
  56. Jin, X., Otonashi-Satoh, Y., Sun, P., Kawamura, N., Tsuboi, T., Yamaguchi, Y., Ueda, T. and Kawasaki, H. : Endotheliumderived hyperpolarizing factor (EDHF) mediates endotheliumdependent vasodilator effects of aqueous extracts from Eucommia ulmoides Oliv. leaves in rat mesenteric resistance arteries. Acta Med. Okayama. 62, 319 (2008).
  57. Gu, J., Wang, J. J., Yan, J., Cui, C. F., Wu, W. H., Li, L., Wang, Z. S., Yu, M., Gao, N., Liu, L. and Ouyang, D. S. : Effects of lignans extracted from Eucommia ulmoides and aldose reductase inhibitor epalrestat on hypertensive vascular remodeling. J. Ethnopharmacol. 133, 6 (2011). https://doi.org/10.1016/j.jep.2010.08.055
  58. Chung, B. S. and Shin, M. G. : Dictionary of Korean Folk Medicine. Young Lim Sa, Seoul, Korea. 813 (1990).
  59. Rao, K. V., Puri, V. N., Diwan, P. K. and Alvarez, F. M. : Preliminary evaluation of manassantin A, a potential neuroleptic agent from Saururus cernuus. Pharmacol. Res. Commun. 19, 629 (1987). https://doi.org/10.1016/0031-6989(87)90117-2
  60. Cho, H. Y., Cho, C. W. and Song, Y. S. : Antioxidative and anti-inflammatory effects of Saururus chinensis methanol extract in RAW 264.7 macrophages. J. Med. Food 8, 190 (2005). https://doi.org/10.1089/jmf.2005.8.190
  61. Sung, S. H. and Kim, Y. C. : Hepatoprotective diastereomeric lignans from Saururus chinensis herbs. J. Nat. Prod. 63, 1019 (2000). https://doi.org/10.1021/np990499e
  62. Kubanek, J., Fenical, W., Hay, M. E., Brown, P. J. and Lindquist, N. : Two antifeedant lignans from the freshwater macrophyte Saururus cernuus. Phytochemistry 54, 281 (2000). https://doi.org/10.1016/S0031-9422(00)00076-5
  63. Lee, W. S., Baek, Y. I., Kim, J. R., Cho, K. H., Sok, D. E. and Jeong, T. S. : Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg. Med. Chem. Lett. 14, 5623 (2004). https://doi.org/10.1016/j.bmcl.2004.08.054
  64. Ryu, S. Y., Oh, K. S., Kim, Y. S. and Lee, B. H. : Antihypertensive, vasorelaxant and inotropic effects of an ethanolic extract of the roots of Saururus chinensis. J. Ethnopharmacol. 118, 284 (2008). https://doi.org/10.1016/j.jep.2008.04.011
  65. Giaccio, M. : Crocetin from saffron: an active component of an ancient spice. Crit. Rev. Food Sci. Nutr. 44, 155 (2004). https://doi.org/10.1080/10408690490441433
  66. Ghadrdoost, B., Vafaei, A. A., Rashidy-Pour, A., Hajisoltani, R., Bandegi, A. R., Motamedi, F., Haghighi, S., Sameni, H. R. and Pahlvan, S. : Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur. J. Pharmacol. 667, 222 (2011). https://doi.org/10.1016/j.ejphar.2011.05.012
  67. Yoshino, F., Yoshida, A., Umigai, N., Kubo, K. and Lee, M. C. : Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J. Clin. Biochem. Nutr. 49, 182 (2011). https://doi.org/10.3164/jcbn.11-01
  68. Nam, K. N., Park, Y. M., Jung, H. J., Lee, J. Y., Min, B. D., Park, S. U., Jung, W. S., Cho, K. H., Park, J. H., Kang, I., Hong, J. W. and Lee, E. H. : Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 648, 110 (2010). https://doi.org/10.1016/j.ejphar.2010.09.003
  69. Zheng, S., Qian, Z., Sheng, L. and Wen, N. : Crocetin attenuates atherosclerosis in hyperlipidemic rabbits through inhibition of LDL oxidation. J. Cardiovasc. Pharmacol. 47, 70 (2006). https://doi.org/10.1097/01.fjc.0000194686.11712.02
  70. Ochiai, T., Shimeno, H., Mishima, K., Iwasaki, K., Fujiwara, M., Tanaka, H., Shoyama, Y., Toda, A., Eyanagi, R. and Soeda, S. : Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim. Biophys. Acta 1770, 578 (2007). https://doi.org/10.1016/j.bbagen.2006.11.012
  71. Sheng, L., Qian, Z., Shi, Y., Yang, L., Xi, L., Zhao, B., Xu, X. and Ji, H. : Crocetin improves the insulin resistance induced by high-fat diet in rats. Br. J. Pharmacol. 154, 1016 (2008). https://doi.org/10.1038/bjp.2008.160
  72. Higashino, S., Sasaki, Y., Giddings, J. C., Hyodo, K., Sakata, S. F., Matsuda, K., Horikawa, Y. and Yamamoto, J. : Crocetin, a carotenoid from Gardenia jasminoides Ellis, protects against hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Phytother. Res. 28, 1315 (2014). https://doi.org/10.1002/ptr.5130
  73. Riccioni, G. : Carotenoids and cardiovascular disease. Curr. Atheroscler. Rep. 11, 434 (2009). https://doi.org/10.1007/s11883-009-0065-z
  74. Rodrigo, R., Gonzalez, J. and Paoletto, F. : The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 34, 431 (2011). https://doi.org/10.1038/hr.2010.264
  75. Rush, J. W., Denniss, S. G. and Graham, D. A. : Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J. Appl. Physiol. 30, 442 (2005). https://doi.org/10.1139/h05-133
  76. Zhu, F., Huang, B., Hu, C. Y., Jiang, Q. Y., Lu, Z. G., Lu, M., Wang, M. H., Gong, M., Qiao, C. P., Chen, W. and Huang, P. H. : Effects of total flavonoids of Hippophae rhamnoides L. on intracellular free calcium in cultured vascular smooth muscle cells of spontaneously hypertensive rats and Wistar-Kyoto rats. Chin. J. Integr. Med. 11, 287 (2005). https://doi.org/10.1007/BF02835791
  77. Zhu, F., Wang, M. H. and Hu, C. Y. : Effect of total flavonoids of hippophae rhamnoides L on the target organs of patients with essential hypertension. Chin. J. Hypertens. 10, 219 (2002).
  78. Liu, F., Wei, Y., Yang, X. Z., Li, F. G., Hu, J. and Cheng, R. F. : [Hypotensive effects of safflower yellow in spontaneously hypertensive rats and influence on plasma renin activity and angiotensin II level]. Yao Xue Xue Bao. 27, 785 (1992).
  79. Shan, L., Liu, R. H., Shen, Y. H., Zhang, W. D., Zhang, C., Wu, D. Z., Min, L., Su, J. and Xu, X. K. : Gastroprotective effect of a traditional Chinese herbal drug "Baishouwu" on experimental gastric lesions in rats. J. Ethnopharmacol. 107, 389 (2006). https://doi.org/10.1016/j.jep.2006.03.022
  80. Lee, M. K., Yeo, H., Kim, J., Markelonis, G. J., Oh, T. H. and Kim, Y. C. : Cynandione A from Cynanchum wilfordii protects cultured cortical neurons from toxicity induced by $H_2O_2$, L-glutamate, and kainate. J. Neurosci. Res. 59, 259 (2000). https://doi.org/10.1002/(SICI)1097-4547(20000115)59:2<259::AID-JNR12>3.0.CO;2-3
  81. Choi, D. H., Lee, Y. J., Kim, J. S., Kang, D. G. and Lee, H. S. : Cynanchum wilfordii ameliorates hypertension and endothelial dysfunction in rats fed with high fat/cholesterol diets. Immunopharmacol. Immunotoxicol. 34, 4 (2012). https://doi.org/10.3109/08923973.2011.569889
  82. Ranilla, L. G., Kwon, Y. I., Apostolidis, E. and Shetty, K. : Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 101, 4676 (2010). https://doi.org/10.1016/j.biortech.2010.01.093
  83. Libby, P., Okamoto, Y., Rocha, V. Z. and Folco, E. : Inflammation in atherosclerosis: transition from theory to practice. Circ J. 74, 213 (2010). https://doi.org/10.1253/circj.CJ-09-0706
  84. Erba, D., Riso, P., Bordoni, A., Foti, P., Biagi, P. L. and Testolin, G. : Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J. Nutr. Biochem. 16, 144 (2005). https://doi.org/10.1016/j.jnutbio.2004.11.006
  85. Panza, V. S., Wazlawik, E., Ricardo Schutz, G., Comin, L., Hecht, K. C. and da Silva, E. L. : Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 24, 433 (2008). https://doi.org/10.1016/j.nut.2008.01.009
  86. Ramesh, E., Geraldine, P. and Thomas, P. A. : Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem. Biol. Interact. 183, 125 (2010). https://doi.org/10.1016/j.cbi.2009.09.013
  87. Son, D. J., Cho, M. R., Jin, Y. R., Kim, S. Y., Park, Y. H., Lee, S. H., Akiba, S., Sato, T. and Yun, Y. P. : Antiplatelet effect of green tea catechins: a possible mechanism through arachidonic acid pathway. Prostaglandins Leukot Essent Fatty Acids 71, 25 (2004). https://doi.org/10.1016/j.plefa.2003.12.004
  88. Antonello, M., Montemurro, D., Bolognesi, M., Di Pascoli, M., Piva, A., Grego, F., Sticchi, D., Giuliani, L., Garbisa, S. and Rossi, G. P. : Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. Am. J. Hypertens. 20, 1321 (2007). https://doi.org/10.1016/j.amjhyper.2007.08.006
  89. Jochmann, N., Lorenz, M., Krosigk, A., Martus, P., Bohm, V., Baumann, G., Stangl, K. and Stangl, V. : The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br. J. Nutr. 99, 863 (2008).
  90. Lin, J. K., Liang, Y. C. and Lin-Shiau, S. Y. : Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol. 58, 911 (1999). https://doi.org/10.1016/S0006-2952(99)00112-4
  91. Duffy, S. J., Keaney, J. F., Jr., Holbrook, M., Gokce, N., Swerdloff, P. L., Frei, B. and Vita, J. A. : Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104, 151 (2001). https://doi.org/10.1161/01.CIR.104.2.151
  92. Minatti, J., Wazlawik, E., Hort, M. A., Zaleski, F. L., Ribeiro-do-Valle, R. M., Maraschin, M. and da Silva, E. L. : Green tea extract reverses endothelial dysfunction and reduces atherosclerosis progression in homozygous knockout low-density lipoprotein receptor mice. Nutr. Res. 32, 684 (2012). https://doi.org/10.1016/j.nutres.2012.08.003
  93. Orozco-Sevilla, V., Naftalovich, R., Hoffmann, T., London, D., Czernizer, E., Yang, C., Dardik, A. and Dardik, H. : Epigallocatechin-3-gallate is a potent phytochemical inhibitor of intimal hyperplasia in the wire-injured carotid artery. J. Vasc. Surg. 58, 1360 (2013). https://doi.org/10.1016/j.jvs.2012.11.090
  94. Jung, S. M., Park, S. S., Kim, W. J. and Moon, S. K. : Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. Eur. J. Pharmacol. 681, 15 (2012). https://doi.org/10.1016/j.ejphar.2012.02.003
  95. Ono, Y., Hattori, E., Fukaya, Y., Imai, S. and Ohizumi, Y. : Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 106, 238 (2006). https://doi.org/10.1016/j.jep.2005.12.036
  96. Karki, R., Jeon, E. R. and Kim, D. W. : Nelumbo nucifera leaf extract inhibits neointimal hyperplasia through modulation of smooth muscle cell proliferation and migration. Nutrition 29, 268 (2013). https://doi.org/10.1016/j.nut.2012.04.018
  97. Teng, C. M., Yu, S. M., Chen, C. C., Huang, Y. L. and Huang, T. F. : EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci. 47, 1153 (1990). https://doi.org/10.1016/0024-3205(90)90176-R
  98. Chen, Y. H., Lin, S. J., Chen, J. W., Ku, H. H. and Chen, Y. L. : Magnolol attenuates VCAM-1 expression in vitro in TNFalpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br. J. Pharmacol. 135, 37 (2002). https://doi.org/10.1038/sj.bjp.0704458
  99. Chen, S. C., Chang, Y. L., Wang, D. L. and Cheng, J. J. : Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br. J. Pharmacol. 148, 226 (2006). https://doi.org/10.1038/sj.bjp.0706647
  100. Karki, R., Jeon, E. R. and Kim, D. W. : Magnoliae Cortex inhibits intimal thickening of carotid artery through modulation of proliferation and migration of vascular smooth muscle cells. Food Chem. Toxicol. 50, 634 (2012). https://doi.org/10.1016/j.fct.2011.11.043
  101. Karki, R., Ho, O. M. and Kim, D. W. : Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim. Biophys. Acta 1830, 2619 (2013). https://doi.org/10.1016/j.bbagen.2012.12.015
  102. Karki, R., Kim, S. B. and Kim, D. W. : Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp. Cell Res. 319, 3238 (2013). https://doi.org/10.1016/j.yexcr.2013.07.016
  103. Ferreira de Araujo, P. R., da Silva Santos, V., Rodrigues Machado, A., Gevehr Fernandes, C., Silva, J. A. and da Silva Rodrigues, R. : Benefits of blackberry nectar (Rubus spp.) relative to hypercholesterolemia and lipid peroxidation. Nutr. Hosp. 26, 984 (2011).
  104. Guarrera, P. M. : Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia. 76, 1 (2005). https://doi.org/10.1016/j.fitote.2004.09.006
  105. Patel, A. V., Rojas-Vera, J. and Dacke, C. G. : Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 11, 1501 (2004). https://doi.org/10.2174/0929867043365143
  106. Yang, H. M., Oh, S. M., Lim, S. S., Shin, H. K., Oh, Y. S. and Kim, J. K. : Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother. Res. 22, 102 (2008). https://doi.org/10.1002/ptr.2274
  107. Park, J. H., Oh, S. M., Lim, S. S., Lee, Y. S., Shin, H. K., Oh, Y. S., Choe, N. H., Park, J. H. and Kim, J. K. : Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem. Biophys. Res. Commun. 351, 146 (2006). https://doi.org/10.1016/j.bbrc.2006.10.008
  108. Park, S. H., Kim, J. L., Lee, E. S., Han, S. Y., Gong, J. H., Kang, M. K. and Kang, Y. H. : Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages. J. Nutr. 141, 1931 (2011). https://doi.org/10.3945/jn.111.144816
  109. Park, P. H., Hur, J., Kim, Y. C., An, R. B. and Sohn, D. H. : Involvement of heme oxygenase-1 induction in inhibitory effect of ethyl gallate isolated from Galla Rhois on nitric oxide production in RAW 264.7 macrophages. Arch. Pharm. Res. 34, 1545 (2011). https://doi.org/10.1007/s12272-011-0917-2
  110. Lee, W. J., Ou, H. C., Hsu, W. C., Chou, M. M., Tseng, J. J., Hsu, S. L., Tsai, K. L. and Sheu, W. H. : Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J. Vasc. Surg. 52, 1290 (2010). https://doi.org/10.1016/j.jvs.2010.04.085
  111. Kim, S., Kim, C. K., Lee, K. S., Kim, J. H., Hwang, H., Jeoung, D., Choe, J., Won, M. H., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. : Aqueous extract of unripe Rubus coreanus fruit attenuates atherosclerosis by improving blood lipid profile and inhibiting NF-kappaB activation via phase II gene expression. J. Ethnopharmacol. 146, 515 (2013). https://doi.org/10.1016/j.jep.2013.01.016
  112. Wu, C. H., Tsai, B. R., Hsieh, W. T., Chang, G. Y., Mao, S. J. and Chang, W. C. : The preventive effects of G115 on balloon injury-induced neointima formation in rats. Life Sci. 70, 669 (2001). https://doi.org/10.1016/S0024-3205(01)01442-4
  113. Xu, L., Liu, J. T., Liu, N., Lu, P. P. and Pang, X. M. : Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. J. Ethnopharmacol. 137, 226 (2011). https://doi.org/10.1016/j.jep.2011.05.020
  114. Yu, X. F., Deng, J., Yang, D. L., Gao, Y., Gong, Q. H. and Huang, X. N. : Total Ginsenosides suppress the neointimal hyperplasia of rat carotid artery induced by balloon injury. Vascul. Pharmacol. 54, 52 (2011). https://doi.org/10.1016/j.vph.2010.12.003
  115. Zhang, W., Chen, G. and Deng, C. Q. : Effects and mechanisms of total Panax notoginseng saponins on proliferation of vascular smooth muscle cells with plasma pharmacology method. J. Pharm. Pharmacol. 64, 139 (2012). https://doi.org/10.1111/j.2042-7158.2011.01379.x
  116. Wu, Q., Wang, W., Li, S., Nagarkatti, P., Nagarkatti, M., Windust, A., Wang, X. L., Tang, D. and Cui, T. : American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway. J. Ethnopharmacol. 144, 782 (2012). https://doi.org/10.1016/j.jep.2012.09.046
  117. Chung, I. M., Kim, M. Y., Park, S. D., Park, W. H. and Moon, H. I. : In vitro evaluation of the antiplasmodial activity of Dendropanax morbifera against chloroquine-sensitive strains of Plasmodium falciparum. Phytother. Res. 23, 1634 (2009). https://doi.org/10.1002/ptr.2838
  118. Lee, J. W., Kim, K. S., An, H. K., Kim, C. H., Moon, H. I. and Lee, Y. C. : Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis. PLoS One. 8, e83611 (2013). https://doi.org/10.1371/journal.pone.0083611
  119. Jin, C. Y., Yu, H. Y., Park, C., Han, M. H., Hong, S. H., Kim, K. S., Lee, Y. C., Chang, Y. C., Cheong, J., Moon, S. K., Kim, G. Y., Moon, H. I., Kim, W. J., Lee, J. H. and Choi, Y. H. : Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells. Int. J. Oncol. 43, 1943 (2013). https://doi.org/10.3892/ijo.2013.2143
  120. Lim, L. J., Yun, J. J., Jeong, J. E., Wi, A. J. and Song, H. S. : Inhibitory effects of Nano-extract from Dendropanax morbifera on proliferation and migration of vascular smooth muscle cells. J. Nanosci. Nanotech. 15, 116 (2015). https://doi.org/10.1166/jnn.2015.8382
  121. Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., Weisz, M., Trakhtenberg, S. and Martin-Belloso, O. : Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 49, 952 (2001). https://doi.org/10.1021/jf000947k
  122. Gorinstein, S., Leontowicz, H., Leontowicz, M., Jesion, I., Namiesnik, J., Drzewiecki, J., Park, Y. S., Ham, K. S., Giordani, E. and Trakhtenberg, S. : Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition 27, 838 (2011). https://doi.org/10.1016/j.nut.2010.08.015
  123. Matsumoto, K., Yokoyama, S. and Gato, N. : Hypolipidemic effect of young persimmon fruit in C57BL/6.KOR-ApoEshl mice. Biosci. Biotechnol. Biochem. 72, 2651 (2008). https://doi.org/10.1271/bbb.80319
  124. Son, J. E., Hwang, M. K., Lee, E., Seo, S. G., Kim, J. E., Jung, S. K., Kim, J. R., Ahn, G. H., Lee, K. W. and Lee, H. J. : Persimmon peel extract attenuates PDGF-BB-induced human aortic smooth muscle cell migration and invasion through inhibition of c-Src activity. Food Chem. 141, 3309 (2013). https://doi.org/10.1016/j.foodchem.2013.06.038
  125. Zweier, J. L. and Talukder, M. A. : The role of oxidants and free radicals in reperfusion injury. Cardiovasc. Res. 70, 181 (2006). https://doi.org/10.1016/j.cardiores.2006.02.025
  126. Buja, L. M.: Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 14, 170 (2005) https://doi.org/10.1016/j.carpath.2005.03.006
  127. Murphy, E. and Steenbergen, C. : Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581 (2008). https://doi.org/10.1152/physrev.00024.2007
  128. Park, E. S., Kang, D. H., Yang, M. K., Kang, J. C., Jang, Y. C., Park, J. S., Kim, S. K. and Shin, H. S. : Cordycepin, 3'-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3beta/p70S6K signaling pathway and HO-1 expression. Cardiovasc. Toxicol. 14, 1 (2014). https://doi.org/10.1007/s12012-013-9232-0
  129. Klipstein-Grobusch, K., Launer, L. J., Geleijnse, J. M., Boeing, H., Hofman, A. and Witteman, J. C. : Serum carotenoids and atherosclerosis. The Rotterdam Study. Atherosclerosis. 148, 49 (2000). https://doi.org/10.1016/S0021-9150(99)00221-X
  130. Gerster, H. : The potential role of lycopene for human health. J. Am. Coll. Nutr. 16, 109 (1997). https://doi.org/10.1080/07315724.1997.10718661
  131. Shukla, S. K., Gupta, S., Ojha, S. K. and Sharma, S. B. : Cardiovascular friendly natural products: a promising approach in the management of CVD. Nat. Prod. Res. 24, 873 (2010). https://doi.org/10.1080/14786410903417378
  132. Lo, H. M., Hung, C. F., Tseng, Y. L., Chen, B. H., Jian, J. S. and Wu, W. B. : Lycopene binds PDGF-BB and inhibits PDGF-BB-induced intracellular signaling transduction pathway in rat smooth muscle cells. Biochem. Pharmacol. 74, 54 (2007). https://doi.org/10.1016/j.bcp.2007.03.017
  133. Baur, J. A. and Sinclair, D. A. : Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5, 493 (2006). https://doi.org/10.1038/nrd2060
  134. Shen, M. Y., Hsiao, G., Liu, C. L., Fong, T. H., Lin, K. H., Chou, D. S. and Sheu, J. R. : Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br. J. Haematol. 139, 475 (2007).
  135. Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M. and Sinclair, D. : Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686 (2004). https://doi.org/10.1038/nature02789
  136. Brito, P. M., Simoes, N. F., Almeida, L. M. and Dinis, T. C. : Resveratrol disrupts peroxynitrite-triggered mitochondrial apoptotic pathway: a role for Bcl-2. Apoptosis. 13, 1043 (2008). https://doi.org/10.1007/s10495-008-0235-4
  137. Rahal, K., Schmiedlin-Ren, P., Adler, J., Dhanani, M., Sultani, V., Rittershaus, A. C., Reingold, L., Zhu, J., McKenna, B. J., Christman, G. M. and Zimmermann, E. M. : Resveratrol has antiinflammatory and antifibrotic effects in the peptidoglycan-polysaccharide rat model of Crohn's disease. Inflamm. Bowel Dis. 18, 613 (2012). https://doi.org/10.1002/ibd.21843
  138. Chan, C. C., Cheng, L. Y., Lin, C. L., Huang, Y. H., Lin, H. C. and Lee, F. Y. : The protective role of natural phytoalexin resveratrol on inflammation, fibrosis and regeneration in cholestatic liver injury. Mol. Nutr. Food Res. 55, 1841 (2011). https://doi.org/10.1002/mnfr.201100374
  139. Athar, M., Back, J. H., Tang, X., Kim, K. H., Kopelovich, L., Bickers, D. R. and Kim, A. L. : Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 224, 274 (2007). https://doi.org/10.1016/j.taap.2006.12.025
  140. Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B. and Bellanger, R. A. : Resveratrol: potential as anticancer agent. J. Diet Suppl. 9, 45 (2012). https://doi.org/10.3109/19390211.2011.650842
  141. Piotrowska, H., Myszkowski, K., Ziolkowska, A., Kulcenty, K., Wierzchowski, M., Kaczmarek, M., Murias, M., Kwiatkowska-Borowczyk, E. and Jodynis-Liebert, J. : Resveratrol analogue 3,4,4',5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol. Appl. Pharmacol. 263, 53 (2012). https://doi.org/10.1016/j.taap.2012.05.023
  142. Sehirli, O., Sakarcan, A., Velioglu-Ogunc, A., Cetinel, S., Gedik, N., Yegen, B. C. and Sener, G. : Resveratrol improves ifosfamide-induced Fanconi syndrome in rats. Toxicol. Appl. Pharmacol. 222, 33 (2007). https://doi.org/10.1016/j.taap.2007.03.025
  143. Xu, Y., Nie, L., Yin, Y. G., Tang, J. L., Zhou, J. Y., Li, D. D. and Zhou, S. W. : Resveratrol protects against hyperglycemiainduced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol. 259, 395 (2012). https://doi.org/10.1016/j.taap.2011.09.028
  144. Li, F., Gong, Q., Dong, H. and Shi, J. : Resveratrol, a neuroprotective supplement for Alzheimer's disease. Curr. Pharm. Des. 18, 27 (2012). https://doi.org/10.2174/138161212798919075
  145. Youn, H. S., Lee, J. Y., Fitzgerald, K. A., Young, H. A., Akira, S. and Hwang, D. H. : Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175, 3339 (2005). https://doi.org/10.4049/jimmunol.175.5.3339
  146. Zhang, C., Lin, G., Wan, W., Li, X., Zeng, B., Yang, B. and Huang, C. : Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-kappaB signaling pathway. Int. J. Mol. Med. 29, 557 (2012). https://doi.org/10.3892/ijmm.2012.885
  147. Xu, H. Q. and Hao, H. P. : Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol. Pharm. Bull. 27, 1014 (2004). https://doi.org/10.1248/bpb.27.1014
  148. Chang, J. S., Chiang, L. C., Hsu, F. F. and Lin, C. C. : Chemoprevention against hepatocellular carcinoma of Cornus officinalis in vitro. Am. J. Chin. Med. 32, 717 (2004). https://doi.org/10.1142/S0192415X04002296
  149. Jiang, W. L., Chen, X. G., Zhu, H. B. and Tian, J. W. : Effect of cornuside on experimental sepsis. Planta Med. 75, 614 (2009). https://doi.org/10.1055/s-0029-1185383
  150. Kang, D. G., Moon, M. K., Lee, A. S., Kwon, T. O., Kim, J. S. and Lee, H. S. : Cornuside suppresses cytokine-induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells. Biol. Pharm. Bull. 30, 1796 (2007). https://doi.org/10.1248/bpb.30.1796
  151. Jiang, W. L., Zhang, S. M., Tang, X. X. and Liu, H. Z. : Protective roles of cornuside in acute myocardial ischemia and reperfusion injury in rats. Phytomedicine. 18, 266 (2011). https://doi.org/10.1016/j.phymed.2010.07.009
  152. Li, X. Z., Liu, J. X., Shang, X. H. and Fu, J. H. : Protective effects of hydroxysafflor yellow A on acute myocardial ischemia in dogs. Chin. Pharmacol. Bull. 533 (2006).
  153. Zang, B. X., Wu, W., Li, W. R., Li, J. R., Li, J. S. and Wang, Y. Q. : Study on the anticoagulation effect of gross safflor yellow prepared by silica gel adsorption. Chin. Pharm. J. 37, 106 (2002).
  154. Hiramatsu, M., Komatsu, M., Xu, Y. and Kasahara, Y. : In vitro and in vivo study of antioxidant action in food plant(carthamus tinctorius linne). Pathophysiology 5, 79 (1998).
  155. Wang, C., Zhang, D., Li, G., Liu, J., Tian, J., Fu, F. and Liu, K. : Neuroprotective effects of safflor yellow B on brain ischemic injury. Exp. Brain Res. 177, 533 (2007). https://doi.org/10.1007/s00221-006-0705-2
  156. Meselhy, M. R., Kadota, S., Momose, Y., Hattori, M. and Namba, T. : Tinctormine, a novel Ca2+ antagonist N-containing quinochalcone C-glycoside from Carthamus tinctorius L. Chem. Pharm. Bull (Tokyo) 40, 3355 (1992). https://doi.org/10.1248/cpb.40.3355
  157. Shan, H. L., Yang, B. F., Li, Y. H., Li, Y. R. and Xu, C. Q. : Effect of safflower yellow pigment on abnormal electrophysiology of cardiac myocytes induced by oxygenderived free radical. Chin. J. Chin. Rehabil. 8, 6810 (2004).
  158. Xue, H. Y., Wei, X. B. and Ding, H. : The protective effect of hydroxysafflower yellow A on hypoxia cardiomyocyte. Zhong Guo Lao Nian Xue Za Zhi. 27, 140 (2007).
  159. Han, S. Y., Li, H. X., Ma, X., Zhang, K., Ma, Z. Z. and Tu, P. F. : Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro. Phytomedicine. 16, 694 (2009). https://doi.org/10.1016/j.phymed.2009.02.019
  160. Duan, J. L., Wang, J. W., Guan, Y., Yin, Y., Wei, G., Cui, J., Zhou, D., Zhu, Y. R., Quan, W., Xi, M. M. and Wen, A. D. : Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro. Acta Pharmacol. Sin. 34, 487 (2013). https://doi.org/10.1038/aps.2012.185
  161. Colin-Gonzalez, A. L., Ortiz-Plata, A., Villeda-Hernandez, J., Barrera, D., Molina-Jijon, E., Pedraza-Chaverri, J. and Maldonado, P. D. : Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats. Plant Foods Hum. Nutr. 66, 348 (2011). https://doi.org/10.1007/s11130-011-0251-3
  162. Chan, J. Y., Tsui, H. T., Chung, I. Y., Chan, R. Y., Kwan, Y. W. and Chan, S. W. : Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species. Int. J. Food Sci. Nutr. 65, 868 (2014). https://doi.org/10.3109/09637486.2014.925428
  163. Nagle, D. G., Ferreira, D. and Zhou, Y. D. : Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67, 1849 (2006). https://doi.org/10.1016/j.phytochem.2006.06.020
  164. Piao, C. S., Kim, D. S., Ha, K. C., Kim, H. R., Chae, H. J. and Chae, S. W. : The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach. Korean J. Physiol. Pharmacol. 15, 259 (2011). https://doi.org/10.4196/kjpp.2011.15.5.259
  165. Miquel, J., Bernd, A., Sempere, J. M., Diaz-Alperi, J. and Ramirez, A. : The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Arch. Gerontol. Geriatr. 34, 37 (2002). https://doi.org/10.1016/S0167-4943(01)00194-7
  166. Maheshwari, R. K., Singh, A. K., Gaddipati, J. and Srimal, R. C. : Multiple biological activities of curcumin: a short review. Life Sci. 78, 2081 (2006). https://doi.org/10.1016/j.lfs.2005.12.007
  167. Wongcharoen, W. and Phrommintikul, A. : The protective role of curcumin in cardiovascular diseases. Int. J. Cardiol. 133, 145 (2009). https://doi.org/10.1016/j.ijcard.2009.01.073
  168. Morimoto, T., Sunagawa, Y., Kawamura, T., Takaya, T., Wada, H., Nagasawa, A., Komeda, M., Fujita, M., Shimatsu, A., Kita, T. and Hasegawa, K. : The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868 (2008).
  169. Cheng, H., Liu, W. and Ai, X. : [Protective effect of curcumin on myocardial ischemia reperfusion injury in rats]. Zhong Yao Cai. 28, 920 (2005).
  170. Dickhout, J. G., Carlisle, R. E. and Austin, R. C. : Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ. Res. 108, 629 (2011). https://doi.org/10.1161/CIRCRESAHA.110.226803
  171. Drazner, M. H. : The progression of hypertensive heart disease. Circulation. 123, 327 (2011). https://doi.org/10.1161/CIRCULATIONAHA.108.845792
  172. Gheorghiade, M. and Ambrosy, A. : Heart failure in 2010: one step forward, two steps back. Nat. Rev. Cardiol. 8, 72 (2011). https://doi.org/10.1038/nrcardio.2010.205
  173. Louis, X. L., Murphy, R., Thandapilly, S. J., Yu, L. and Netticadan, T. : Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide. BMC Complement Altern. Med. 12, 140 (2012). https://doi.org/10.1186/1472-6882-12-140
  174. Chang, S. H., Liu, C. J., Kuo, C. H., Chen, H., Lin, W. Y., Teng, K. Y., Chang, S. W., Tsai, C. H., Tsai, F. J., Huang, C. Y., Tzang, B. S. and Kuo, W. W. : Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats. Evid. Based Complement Alternat. Med. 2011, 950150 (2011).
  175. Brandle, M., al Makdessi, S., Weber, R. K., Dietz, K. and Jacob, R. : Prolongation of life span in hypertensive rats by dietary interventions. Effects of garlic and linseed oil. Basic Res. Cardiol. 92, 223 (1997). https://doi.org/10.1007/BF00788517
  176. Givvimani, S., Munjal, C., Gargoum, R., Sen, U., Tyagi, N., Vacek, J. C. and Tyagi, S. C. : Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J. Appl. Physiol. 110, 1093 (2011). https://doi.org/10.1152/japplphysiol.01064.2010
  177. Minamishima, S., Bougaki, M., Sips, P. Y., Yu, J. D., Minamishima, Y. A., Elrod, J. W., Lefer, D. J., Bloch, K. D. and Ichinose, F. : Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120, 888 (2009). https://doi.org/10.1161/CIRCULATIONAHA.108.833491
  178. Yong, Q. C., Hu, L. F., Wang, S., Huang, D. and Bian, J. S. : Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc. Res. 88, 482 (2010). https://doi.org/10.1093/cvr/cvq248
  179. Li, L., Hsu, A. and Moore, P. K. : Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Pharmacol. Ther. 123, 386 (2009). https://doi.org/10.1016/j.pharmthera.2009.05.005