DOI QR코드

DOI QR Code

Characterization of proteases isolated from Kudoa septempunctata

  • Shin, Sang Phil (Fisheries Laboratory, Kinki University) ;
  • Zenke, Kosuke (Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo) ;
  • Yokoyama, Hiroshi (Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo)
  • 투고 : 2015.07.28
  • 심사 : 2015.08.17
  • 발행 : 2015.09.30

초록

Proteases play important roles in parasite development and host parasite interactions. The protease of Kudoa spp. has been recognized as a key factor of severe proteolysis of fish muscle post-mortem; however, there is little information available regarding the protease of Kudoa (K.) septempunctata, which was recently identified as a cause of food poisoning in humans. The present study was conducted to isolate and characterize proteases to elucidate the type of protease contained in the parasite and determine the optimal pH for protease activity. We confirmed the cysteine protease and metalloprotease produced by K. septempunctata. While the cysteine protease showed optimal activity at pH 5 that decreased rapidly with increasing pH, the optimal activity of metalloprotease was pH 7, and it remained stable from pH 6 to pH 8. These results indicate that the pH of cysteine protease is not proper for fish muscle postmortem, and that metalloprotease can act in human intestines. Overall, the present study provides important information that improves our understanding of the role of protease physiology and the subsequent food poisoning caused by K. septempunctata.

키워드

참고문헌

  1. Degen LP, Phillips SF. Variability of gastrointestinal transit in healthy women and men. Gut 1996, 39, 299-305. https://doi.org/10.1136/gut.39.2.299
  2. Delbarre-Ladrat C, Cheret R, Taylor R, Verrez-Bagnis V. Trends in postmortem aging in fish: understanding of proteolysis and disorganization of the myofibrillar structure. Crit Rev Food Sci Nutr 2006, 46, 409-421. https://doi.org/10.1080/10408390591000929
  3. Dorfler C. El-Matbouli M. Isolation of a subtilisin-like serine protease gene (MyxSubtSP) from spores of Myxobolus cerebralis, the causative agent of whirling disease. Dis Aquat Organ 2007, 73, 245-251. https://doi.org/10.3354/dao073245
  4. Faisal M, Schafhauser DY, Garreis KA, Elsayed E, La Peyre JF. Isolation and characterization of Perkinsus marinus proteases using bacitracin-sepharose affinity chromatography. Comp Biochem Physiol B Biochem Mol Biol 1999, 123, 417-426. https://doi.org/10.1016/S0305-0491(99)00088-7
  5. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 1999, 46, 183-196.
  6. Foy RJ, Crapo CA, Kramer DE. Investigating the roles of temperature and exercise in the development of chalkiness in Pacific halibut. Report No. 50. 24p. International Pacific Halibut Commission (US), Washington, 2006.
  7. Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: a unique cytoplasmic cysteine protease. Comp Biochem Physiol B Biochem Mol Biol 2008, 149, 477-489. https://doi.org/10.1016/j.cbpb.2007.11.011
  8. Gras S, Byzia A, Gilbert FB, McGowan S, Drag M, Silvestre A, Niepceron A, Lecaille F, Lalmanach G, Brossier F. Aminopeptidase N1 (EtAPN1), an M1 metalloprotease of the apicomplexan parasite Eimeria tenella, participates in parasite development. Eukaryot Cell 2014, 13, 884-895. https://doi.org/10.1128/EC.00062-14
  9. Iwashita Y, Kamijo Y, Nakahashi S, Shindo A, Yokoyama K, Yamamoto A, Omori Y, Ishikura K, Fujioka M, Hatada T, Takeda T, Maruyama K, Imai H. Food poisoning associated with Kudoa septempunctata. J Emerg Med 2013, 44, 943-945. https://doi.org/10.1016/j.jemermed.2012.11.026
  10. Jeon CH, Wi S, Song JY, Choi HS, Kim JH. Development of loop-mediated isothermal amplification method for detection of Kudoa septempunctata (Myxozoa: Multivalvulida) in olive flounder (Paralichthys olivaceus). Parasitol Res 2014, 113, 1759-1767. https://doi.org/10.1007/s00436-014-3821-0
  11. Kawai T, Sekizuka T, Yahata Y, Kuroda M, Kumeda Y, Iijima Y, Kamata Y, Sugita-Konishi Y, Ohnishi T. Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clin Infect Dis 2012, 54, 1046-1052. https://doi.org/10.1093/cid/cir1040
  12. Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004, 279, 48426-48433. https://doi.org/10.1074/jbc.M402470200
  13. Malagon D, Adroher FJ, Diaz-Lopez M, Benitez R. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae). Dis Aquat Organ 2010, 90, 129-134. https://doi.org/10.3354/dao02234
  14. Martinez de Velasco G, Rodero M, Cuellar C, Chivato T, Mateos JM, Laguna R. Skin prick test of Kudoa sp. antigens in patients with gastrointestinal and/or allergic symptoms related to fish ingestion. Parasitol Res 2008, 103, 713-715. https://doi.org/10.1007/s00436-008-1017-1
  15. Martone CB, Spivak E, Busconi L, Folco EJE, Sanchez JJ. A cysteine protease from myxosporean degrades host myofibrils in vitro. Comp Biochem Physiol B Biochem Mol Biol 1999, 123, 267-272. https://doi.org/10.1016/S0305-0491(99)00062-0
  16. Massa AE, Palacios DL, Paredi ME, Crupkin M. Postmortem changes in quality indices of ice-stored flounder (Paralichthys patagonicus). J Food Biochem 2005, 29, 570-590. https://doi.org/10.1111/j.1745-4514.2005.00050.x
  17. Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, Hong WJ, Olivier M, Gagnon E, Desjardins M, Descoteaux A. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 2013, 14, 15-25. https://doi.org/10.1016/j.chom.2013.06.003
  18. Matsukane Y, Sato H, Tanaka S, Kamata Y, Sugita-Konishi Y. Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. Parasitol Res 2010, 107, 865-872. https://doi.org/10.1007/s00436-010-1941-8
  19. McKerrow JH. Parasite proteases. Exp Parasitol 1989, 68, 111-115. https://doi.org/10.1016/0014-4894(89)90016-7
  20. McKerrow JH. Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 1999, 29, 833-837. https://doi.org/10.1016/S0020-7519(99)00044-2
  21. McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 1993, 47, 821-853. https://doi.org/10.1146/annurev.mi.47.100193.004133
  22. Moran JDW, Whitaker DJ, Kent ML. A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture 1999, 172, 163-196. https://doi.org/10.1016/S0044-8486(98)00437-2
  23. Ohnishi T, Kikuchi Y, Furusawa H, Kamata Y, Sugita- Konishi Y. Kudoa septempunctata invasion increases the permeability of human intestinal epithelial monolayer. Foodborne Pathog Dis 2013, 10, 137-142. https://doi.org/10.1089/fpd.2012.1294
  24. Que X, Reed SL. Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 2000, 13, 196-206. https://doi.org/10.1128/CMR.13.2.196-206.2000
  25. Shin SP, Han SY, Han JE, Jun JW, Kim JH, Park SC. Expression and characterization of cathepsin L-like cysteine protease from Philasterides dicentrarchi. Parasitol Int 2014, 63, 359-365. https://doi.org/10.1016/j.parint.2013.12.007
  26. Shin SP, Zenke K, Yokoyama H, Yoshinaga T. Factors affecting sporoplasm release in Kudoa septempunctata. Parasitol Res 2015, 114, 795-799. https://doi.org/10.1007/s00436-014-4305-y
  27. Whipps CM, Grossel G, Adlard RD, Yokoyama H, Bryant MS, Munday BL, Kent ML. Phylogeny of the multivalvulidae (Myxozoa: Myxosporea) based on comparative ribosomal DNA sequence analysis. J Parasitol 2004, 90, 618-622. https://doi.org/10.1645/GE-153R
  28. Worsoe J, Fynne L, Gregersen T, Schlageter V, Christensen LA, Dahlerup JF, Rijkhoff NJ, Laurberg S, Krogh K. Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterol 2011, 11, 145. https://doi.org/10.1186/1471-230X-11-145