References
- Addessi, D., Lacarbonara, W. and Paolone, A. (2005), "On the linear normal modes of planar pre-stressed curved beams", J. Sound Vib., 284(3-5), 1075-1097. https://doi.org/10.1016/j.jsv.2004.07.021
- Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), "Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions", Compos. Struct., 72(1), 91-104. https://doi.org/10.1016/j.compstruct.2004.10.019
- Ang, M.H., Wei, W. and Teck-Seng, L. (1993), "On the estimation of the large deflection of a cantilever beam", Proceedings of the IECON '93 International Conference on Industrial Electronics, Control, and Instrumentation, Maui, HI, USA, November.
- Bauchau, O.A. and Hong, C.H. (1988), "Nonlinear composite beam theory", J. Appl. Mech.-T. Asme, 55(1), 156-163. https://doi.org/10.1115/1.3173622
- Bayat, M., Pakar, I. and Bayat, M. (2013), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., Int. J., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
- Belendez, T., Neipp, C. and Belendez, A. (2002), "Large and small deflections of a cantilever beam", Eur. J. Phys., 23(3), 371-379. https://doi.org/10.1088/0143-0807/23/3/317
- Belendez, T., Neipp, C. and Belendez, A. (2003), "Numerical and experimental analysis of a cantilever beam: a laboratory project to introduce geometric nonlinearity in mechanics of materials", Int. J. Eng. Educ., 19(6), 885-892.
- Bisshopp, K.E. and Drucker, D.C. (1945), "Large deflection of cantilever beams", Q. Appl, Math., 3, 272-275. https://doi.org/10.1090/qam/13360
- Chen, J.K. and Sun, C.T. (1985), "Dynamic large deflection response of composite laminates subjected to impact", Compos. Struct., 4(1), 59-73. https://doi.org/10.1016/0263-8223(85)90020-0
- Chen, L. (2010), "An integral approach for large deflection cantilever beams", Int. J. Nonlin. Mech., 45(3), 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004
- Cornil, M.B., Capolungo, L., Qu, J. and Jairazbhoy, V.A. (2007), "Free vibration of a beam subjected to large static deflection", J. Sound Vib., 303(3-5), 723-740. https://doi.org/10.1016/j.jsv.2007.02.016
- Gay, D., Hoa, S.V. and Tsai, S.W. (2003), Composite Materials Design and Applications, CRC press, New York, NY, USA.
- Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
- Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A review", Compos. Struct., 100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001
- Holden, J.T. (1972), "On the finite deflections of thin beams", Int. J. Solids Struct., 8(8), 1051-1055. https://doi.org/10.1016/0020-7683(72)90069-8
- Holland, D.B., Virgin, L.N. and Plaut, R.H. (2008), "Large deflections and vibration of a tapered cantilever pulled at its tip by a cable", J. Sound Vib., 310(1-2), 433-441. https://doi.org/10.1016/j.jsv.2007.06.075
- Jeon, S.M., Cho, M.H. and Lee, I. (1995), "Static and dynamic analysis of composite box beams using large deflection theory", Comput. Struct., 57(4), 635-642. https://doi.org/10.1016/0045-7949(95)00054-K
- Jones, R.M. (1999), Mechanical of Composite Materials, (2nd Edition), Taylor & Francis Inc, USA.
- Kant, T. and Kommineni, J.R. (1994), "Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and C0 finite elements", Comput. Struct., 50(1), 123-134. https://doi.org/10.1016/0045-7949(94)90443-X
- Karaagac, C., Ozturk, H. and Sabuncu, M. (2013), "Effects of an edge crack on the free vibration and lateral buckling of a cantilever laminated composite slender beam", J. Vib. Control, 19(16), 2506-2522. https://doi.org/10.1177/1077546312458307
- Khdeir, A.A. and Reddy, J.N. (1994), "Free vibration of cross-ply laminated beams with arbitrary boundary conditions", Int. J. Eng. Sci., 32(12), 1971-1980. https://doi.org/10.1016/0020-7225(94)90093-0
- Kien, N.D. (2013), "Large displacement response of tapered cantilever beams made of axially functionally graded material", Compos. Part B, 55, 298-305. https://doi.org/10.1016/j.compositesb.2013.06.024
- Lee, K. (2002), "Large deflections of cantilever beams of non-linear elastic material under a combined loading", Int. J. Nonlin. Mech., 37(3), 439-443. https://doi.org/10.1016/S0020-7462(01)00019-1
- Murty, A.V.K. and Shimpi, R.P. (1974), "Vibration of laminated beams", J. Sound Vib., 36(2), 273-284. https://doi.org/10.1016/S0022-460X(74)80298-1
- Nallathambi, A.K., Rao, C.L. and Srinivasan, S.M. (2010), "Large deflection of constant curvature cantilever beam under follower load", Int. J. Mech. Sci., 52(3), 440-445. https://doi.org/10.1016/j.ijmecsci.2009.11.004
- Ozturk, H. (2011), "In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam", Finite Elem. Anal. Des., 47(3), 229-236. https://doi.org/10.1016/j.finel.2010.10.003
- Ozturk, H. and Sabuncu, M. (2005) "Stability analysis of a cantilever composite beam on elastics supports", Compos. Sci. Technol., 65(13), 1982-1995. https://doi.org/10.1016/j.compscitech.2005.03.004
- Pulngern, T., Chucheepsakul, S. and Halling, M.W. (2005), "Analytical and experimental studies on the large amplitude free vibrations of variable-arc-length beams", J. Vib. Control, 11(7), 923-947. https://doi.org/10.1177/1077546305054858
- Rao, B.N. and Rao, G.V. (1986), "On the large deflection of cantilever beams with end rotational load", ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 66(10), 507-509. https://doi.org/10.1002/zamm.19860661027
- Rao, K.M., Desai, Y.M. and Chitnis, M.R. (2001), "Free vibrations of laminated beams using mixed theory", Compos. Struct., 52(2), 149-160. https://doi.org/10.1016/S0263-8223(00)00162-8
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, CRS Press, New York, NY, USA.
- Rikards, R., Chate, A. and Barkanov, E. (1993), "Finite element analysis of damping the vibrations of laminated composites", Compos. Struct., 47(6), 1005-1015. https://doi.org/10.1016/0045-7949(93)90305-W
- Schmidt, W.F. (1978), "Nonlinear bending of beams using the finite element method", Comput. Struct., 8(1), 153-158. https://doi.org/10.1016/0045-7949(78)90172-4
- Silva, V.D.D. (2006), Mechanics and Strength of Materials, Springer, Berlin, Heidelberg, Germany.
- Stemple, A.D. and Lee, S.W. (1989), "A finite element model for composite beams undergoing large deflection with arbitrary cross- sectional warping", Int. J. Numer. Meth. Eng., 28(9), 2143-2160. https://doi.org/10.1002/nme.1620280911
- Sun, C.T. and Chin, H. (1988), "On large deflection effects in unsymmetric cross-ply composite laminates", J. Compos. Mater., 22(11), 1045-1059. https://doi.org/10.1177/002199838802201103
- Thomas, D.L. and Wilson, R.R. (1973), "The use of straight beam finite elements for analysis of vibrations of curved beams", J. Sound Vib., 26(1), 155-158. https://doi.org/10.1016/S0022-460X(73)80211-1
- Tseng, Y.P., Huang, C.S. and Kao, M.S. (2000), "In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis", Compos. Struct., 50(2), 103-114. https://doi.org/10.1016/S0263-8223(00)00003-9
- Upadhyay, P.C. and Lyons, J.S. (2000), "Effect of hygrothermal environment on the bending of PMC laminates under large deflection", J. Reinf. Plast. Compos., 19(6), 465-491. https://doi.org/10.1106/5TP7-CX5C-88RK-BJ4C
- Wang, T.M. (1968), "Non-linear bending of beams with concentrated loads", J. Franklin Inst., 285(5), 386-390. https://doi.org/10.1016/0016-0032(68)90486-9
- Wang, T.M. (1969), "Non-linear bending of beams with uniformly distributed loads", Int. J. Nonlin. Mech., 4(4), 389-395. https://doi.org/10.1016/0020-7462(69)90034-1
- Yang, T.Y. (1973), "Matrix displacement solution to elastica problems of beams and frames", Int. J. Solids Struct., 9(7), 829-842. https://doi.org/10.1016/0020-7683(73)90006-1
- Yang, Y.B., Kuo, S.R. and Yau, J.D. (1991), "Use of straight-beam approach to study buckling of curved beams", J. Struct. Eng.-ASCE., 117(7), 1963-1978. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:7(1963)
- Zhang, Y., Wang, S. and Petersson, B. (2003), "Large deflection analysis of composite laminates", J. Mater. Process. Technol., 138(1-3), 34-40. https://doi.org/10.1016/S0924-0136(03)00045-1
Cited by
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- A study on natural frequencies and damping ratios of composite beams with holes vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1211
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- Vibrations of pinned-fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point vol.393, 2017, https://doi.org/10.1016/j.jsv.2016.12.032
- On the eigenfrequencies of preloaded rotationally restrained extensible circular beams by Green’s functions pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2285-1
- Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2015, https://doi.org/10.12989/gae.2018.16.2.141
- Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
- Finite element vibration analysis of laminated composite parabolic thick plate frames vol.35, pp.1, 2015, https://doi.org/10.12989/scs.2020.35.1.043
- Location-based effect of decomposition on laminated curved plate structures vol.18, pp.8, 2015, https://doi.org/10.1590/1679-78256671