DOI QR코드

DOI QR Code

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan (Dokuz Eylul University, Department of Mechanical Engineering)
  • Received : 2014.10.09
  • Published : 2015.09.25

Abstract

In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.

Keywords

References

  1. Addessi, D., Lacarbonara, W. and Paolone, A. (2005), "On the linear normal modes of planar pre-stressed curved beams", J. Sound Vib., 284(3-5), 1075-1097. https://doi.org/10.1016/j.jsv.2004.07.021
  2. Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), "Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions", Compos. Struct., 72(1), 91-104. https://doi.org/10.1016/j.compstruct.2004.10.019
  3. Ang, M.H., Wei, W. and Teck-Seng, L. (1993), "On the estimation of the large deflection of a cantilever beam", Proceedings of the IECON '93 International Conference on Industrial Electronics, Control, and Instrumentation, Maui, HI, USA, November.
  4. Bauchau, O.A. and Hong, C.H. (1988), "Nonlinear composite beam theory", J. Appl. Mech.-T. Asme, 55(1), 156-163. https://doi.org/10.1115/1.3173622
  5. Bayat, M., Pakar, I. and Bayat, M. (2013), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., Int. J., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
  6. Belendez, T., Neipp, C. and Belendez, A. (2002), "Large and small deflections of a cantilever beam", Eur. J. Phys., 23(3), 371-379. https://doi.org/10.1088/0143-0807/23/3/317
  7. Belendez, T., Neipp, C. and Belendez, A. (2003), "Numerical and experimental analysis of a cantilever beam: a laboratory project to introduce geometric nonlinearity in mechanics of materials", Int. J. Eng. Educ., 19(6), 885-892.
  8. Bisshopp, K.E. and Drucker, D.C. (1945), "Large deflection of cantilever beams", Q. Appl, Math., 3, 272-275. https://doi.org/10.1090/qam/13360
  9. Chen, J.K. and Sun, C.T. (1985), "Dynamic large deflection response of composite laminates subjected to impact", Compos. Struct., 4(1), 59-73. https://doi.org/10.1016/0263-8223(85)90020-0
  10. Chen, L. (2010), "An integral approach for large deflection cantilever beams", Int. J. Nonlin. Mech., 45(3), 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004
  11. Cornil, M.B., Capolungo, L., Qu, J. and Jairazbhoy, V.A. (2007), "Free vibration of a beam subjected to large static deflection", J. Sound Vib., 303(3-5), 723-740. https://doi.org/10.1016/j.jsv.2007.02.016
  12. Gay, D., Hoa, S.V. and Tsai, S.W. (2003), Composite Materials Design and Applications, CRC press, New York, NY, USA.
  13. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  14. Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A review", Compos. Struct., 100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001
  15. Holden, J.T. (1972), "On the finite deflections of thin beams", Int. J. Solids Struct., 8(8), 1051-1055. https://doi.org/10.1016/0020-7683(72)90069-8
  16. Holland, D.B., Virgin, L.N. and Plaut, R.H. (2008), "Large deflections and vibration of a tapered cantilever pulled at its tip by a cable", J. Sound Vib., 310(1-2), 433-441. https://doi.org/10.1016/j.jsv.2007.06.075
  17. Jeon, S.M., Cho, M.H. and Lee, I. (1995), "Static and dynamic analysis of composite box beams using large deflection theory", Comput. Struct., 57(4), 635-642. https://doi.org/10.1016/0045-7949(95)00054-K
  18. Jones, R.M. (1999), Mechanical of Composite Materials, (2nd Edition), Taylor & Francis Inc, USA.
  19. Kant, T. and Kommineni, J.R. (1994), "Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and C0 finite elements", Comput. Struct., 50(1), 123-134. https://doi.org/10.1016/0045-7949(94)90443-X
  20. Karaagac, C., Ozturk, H. and Sabuncu, M. (2013), "Effects of an edge crack on the free vibration and lateral buckling of a cantilever laminated composite slender beam", J. Vib. Control, 19(16), 2506-2522. https://doi.org/10.1177/1077546312458307
  21. Khdeir, A.A. and Reddy, J.N. (1994), "Free vibration of cross-ply laminated beams with arbitrary boundary conditions", Int. J. Eng. Sci., 32(12), 1971-1980. https://doi.org/10.1016/0020-7225(94)90093-0
  22. Kien, N.D. (2013), "Large displacement response of tapered cantilever beams made of axially functionally graded material", Compos. Part B, 55, 298-305. https://doi.org/10.1016/j.compositesb.2013.06.024
  23. Lee, K. (2002), "Large deflections of cantilever beams of non-linear elastic material under a combined loading", Int. J. Nonlin. Mech., 37(3), 439-443. https://doi.org/10.1016/S0020-7462(01)00019-1
  24. Murty, A.V.K. and Shimpi, R.P. (1974), "Vibration of laminated beams", J. Sound Vib., 36(2), 273-284. https://doi.org/10.1016/S0022-460X(74)80298-1
  25. Nallathambi, A.K., Rao, C.L. and Srinivasan, S.M. (2010), "Large deflection of constant curvature cantilever beam under follower load", Int. J. Mech. Sci., 52(3), 440-445. https://doi.org/10.1016/j.ijmecsci.2009.11.004
  26. Ozturk, H. (2011), "In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam", Finite Elem. Anal. Des., 47(3), 229-236. https://doi.org/10.1016/j.finel.2010.10.003
  27. Ozturk, H. and Sabuncu, M. (2005) "Stability analysis of a cantilever composite beam on elastics supports", Compos. Sci. Technol., 65(13), 1982-1995. https://doi.org/10.1016/j.compscitech.2005.03.004
  28. Pulngern, T., Chucheepsakul, S. and Halling, M.W. (2005), "Analytical and experimental studies on the large amplitude free vibrations of variable-arc-length beams", J. Vib. Control, 11(7), 923-947. https://doi.org/10.1177/1077546305054858
  29. Rao, B.N. and Rao, G.V. (1986), "On the large deflection of cantilever beams with end rotational load", ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 66(10), 507-509. https://doi.org/10.1002/zamm.19860661027
  30. Rao, K.M., Desai, Y.M. and Chitnis, M.R. (2001), "Free vibrations of laminated beams using mixed theory", Compos. Struct., 52(2), 149-160. https://doi.org/10.1016/S0263-8223(00)00162-8
  31. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, CRS Press, New York, NY, USA.
  32. Rikards, R., Chate, A. and Barkanov, E. (1993), "Finite element analysis of damping the vibrations of laminated composites", Compos. Struct., 47(6), 1005-1015. https://doi.org/10.1016/0045-7949(93)90305-W
  33. Schmidt, W.F. (1978), "Nonlinear bending of beams using the finite element method", Comput. Struct., 8(1), 153-158. https://doi.org/10.1016/0045-7949(78)90172-4
  34. Silva, V.D.D. (2006), Mechanics and Strength of Materials, Springer, Berlin, Heidelberg, Germany.
  35. Stemple, A.D. and Lee, S.W. (1989), "A finite element model for composite beams undergoing large deflection with arbitrary cross- sectional warping", Int. J. Numer. Meth. Eng., 28(9), 2143-2160. https://doi.org/10.1002/nme.1620280911
  36. Sun, C.T. and Chin, H. (1988), "On large deflection effects in unsymmetric cross-ply composite laminates", J. Compos. Mater., 22(11), 1045-1059. https://doi.org/10.1177/002199838802201103
  37. Thomas, D.L. and Wilson, R.R. (1973), "The use of straight beam finite elements for analysis of vibrations of curved beams", J. Sound Vib., 26(1), 155-158. https://doi.org/10.1016/S0022-460X(73)80211-1
  38. Tseng, Y.P., Huang, C.S. and Kao, M.S. (2000), "In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis", Compos. Struct., 50(2), 103-114. https://doi.org/10.1016/S0263-8223(00)00003-9
  39. Upadhyay, P.C. and Lyons, J.S. (2000), "Effect of hygrothermal environment on the bending of PMC laminates under large deflection", J. Reinf. Plast. Compos., 19(6), 465-491. https://doi.org/10.1106/5TP7-CX5C-88RK-BJ4C
  40. Wang, T.M. (1968), "Non-linear bending of beams with concentrated loads", J. Franklin Inst., 285(5), 386-390. https://doi.org/10.1016/0016-0032(68)90486-9
  41. Wang, T.M. (1969), "Non-linear bending of beams with uniformly distributed loads", Int. J. Nonlin. Mech., 4(4), 389-395. https://doi.org/10.1016/0020-7462(69)90034-1
  42. Yang, T.Y. (1973), "Matrix displacement solution to elastica problems of beams and frames", Int. J. Solids Struct., 9(7), 829-842. https://doi.org/10.1016/0020-7683(73)90006-1
  43. Yang, Y.B., Kuo, S.R. and Yau, J.D. (1991), "Use of straight-beam approach to study buckling of curved beams", J. Struct. Eng.-ASCE., 117(7), 1963-1978. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:7(1963)
  44. Zhang, Y., Wang, S. and Petersson, B. (2003), "Large deflection analysis of composite laminates", J. Mater. Process. Technol., 138(1-3), 34-40. https://doi.org/10.1016/S0924-0136(03)00045-1

Cited by

  1. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  2. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  3. A study on natural frequencies and damping ratios of composite beams with holes vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1211
  4. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  5. Vibrations of pinned-fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point vol.393, 2017, https://doi.org/10.1016/j.jsv.2016.12.032
  6. On the eigenfrequencies of preloaded rotationally restrained extensible circular beams by Green’s functions pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2285-1
  7. Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2015, https://doi.org/10.12989/gae.2018.16.2.141
  8. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
  9. Finite element vibration analysis of laminated composite parabolic thick plate frames vol.35, pp.1, 2015, https://doi.org/10.12989/scs.2020.35.1.043
  10. Location-based effect of decomposition on laminated curved plate structures vol.18, pp.8, 2015, https://doi.org/10.1590/1679-78256671